Skip to main content
Log in

A review of cellulose-based substrates for SERS: fundamentals, design principles, applications

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Surface enhanced Raman spectroscopy (SERS) provides a useful sensory platform whereby target molecules at low concentration are identified, potentially detecting a single molecule. As a result, SERS has been widely applied in a variety of research endeavors using different substrates, one of which is a cellulose-based substrate. The unique properties of cellulose in its various forms make it an important component in the design of a SERS substrate. Being a flexible substrate with minimal SERS signal interference, paper-based cellulose templates are the most extensively explored form of cellulose in SERS substrate design, with innovative designs and applications. This review provides an overview of the fundamental tools of SERS enhancement, followed by a comprehensive appraisal of the various design principles associated with producing cellulose-based materials and their use as SERS substrates. Though cellulose in its various forms cannot provide the localized surface plasmon resonance required in SERS, it aids in aggregation and stabilization of plasmonic nanoparticles leading to “hot spots” for SERS signal enhancement. The unconventional techniques adopted in the designs are examined and the associated challenges are highlighted. The review demonstrates SERS applications of the substrates in diverse technologies such as bioanalysis, water quality assessment, food safety, adulteration of illicit drugs and dye identification in artworks. Ultimately, we envisage the need for a universal set standard to realize the ideal of designing SERS substrates from the perspective of end-user demand. This can be achieved through a re-evaluation of existing findings on cellulose-based SERS substrates.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Source: CMF: Reproduced with permission from Dufresne et al. (2000). Copyright 2000 John Wiley and Sons, CNF: Reprinted by permission from Wang et al. (2012b). Copyright 2012 Springer Nature, NCC: Reprinted from Ogundare et al. (2017). Copyright 2017 with permission from Elsevier, SNC: Reprinted from Lu and Hsieh (2012a). Copyright 2012 with permission from Elsevier

Fig. 2

Source: Reprinted with permission from Lee et al. (2018). Copyright (2018) American Chemical Society

Fig. 3

Source: Reprinted from Li et al. (2016). Copyright 2016 with permission from Elsevier

Fig. 4

Source: Reproduced from Yu et al. (2015). Copyright 2015 with permission from The Royal Society of Chemistry

Fig. 5

Source: Reprinted with permission from Lee et al. (2010). Copyright (2010) American Chemical Society. Illustration of H2O/DCM interface self-assembled Ag nanoparticles on filter paper by immersion (B). Reproduced from Lin et al. (2014). Copyright 2014 with permission from The Royal Society of Chemistry

Fig. 6

Source: Reproduced from Yu and White (2013a). Copyright 2013 with permission from The Royal Society of Chemistry. (2) screen printing of Au–Ag bimetallic SERS substrate and microfluidic channels on paper. Reprinted from Qu et al. (2013). Copyright 2013 with permission from Elsevier

Fig. 7

Source: Reproduced with permission from Li et al. (2013a). Copyright 2013 John Wiley and Sons, (2) writing of metal nanoparticles on paper. Reproduced with permission from Polavarapu et al. (2014). Copyright 2014 John Wiley and Sons, and (3) Ag nanoparticles coated on paper by brushing. Reproduced from Zhang et al. (2014b). Copyright 2014 with permission from The Royal Society of Chemistry

Fig. 8

Source: Reproduced from Ke et al. (2017). Copyright 2017 with permission from The Royal Society of Chemistry

Fig. 9

Source: Reprinted from Ogundare and Van Zyl (2018). Copyright 2018 with permission from Elsevier

Fig. 10

Source: Reprinted from Liu et al. (2014). Copyright 2014 with permission from Elsevier. (2) Tear screening for Gouty arthritis diagnosis. Reprinted with permission from Park et al. (2017b). Copyright (2017) American Chemical Society and (3) Pre-natal diseases detection. Reprinted with permission from Kim et al. (2018c). Copyright (2018) American Chemical Society

Similar content being viewed by others

References

  • Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85:3977–3983

    Article  CAS  PubMed  Google Scholar 

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  • Alonso-González P, Albella P, Schnell M, Chen J, Huth F, García-Etxarri A, Casanova F, Golmar F, Arzubiaga L, Hueso L (2012) Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat Commun 3:684

    Article  CAS  PubMed  Google Scholar 

  • Araújo A, Pimentel A, Oliveira MJ, Mendes MJ, Franco R, Fortunato E, Águas H, Martins R (2017) Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flex Print Electron 2:014001

    Article  CAS  Google Scholar 

  • Arcot LR, Uddin KMA, Chen X, Wenchao X, Xianming K, Johansson LS, Ras RH, Rojas OJ (2015) Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose. Cellulose 22:4027–4034

    Article  CAS  Google Scholar 

  • Ayora M, Ballesteros L, Perez R, Ruperez A, Laserna J (1997) Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry. Anal Chim Acta 355:15–21

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393

    Article  CAS  Google Scholar 

  • Barbillon G (2019) Fabrication and SERS performances of Metal/Si and Metal/ZnO nanosensors: a review. Coatings 9:86

    Article  CAS  Google Scholar 

  • Berger AG, Restaino SM, White IM (2017) Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal Chim Acta 949:59–66

    Article  CAS  PubMed  Google Scholar 

  • Berthod A, Laserna J, Winefordner J (1988) Analysis by surface enhanced Raman spectroscopy on silver hydrosols and silver coated filter papers. J Pharm Biomed Anal 6:599–608

    Article  CAS  PubMed  Google Scholar 

  • Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16:2224–2239

    Article  CAS  PubMed  Google Scholar 

  • Bjerneld EJ, Földes-Papp Z, Käll M, Rigler R (2002) Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase. J Phys Chem B 106:1213–1218

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR, Chandler JP (2008) Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh–Gans–Debye regime. Biomacromol 9:1255–1263

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Brito BS, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536

    Article  CAS  Google Scholar 

  • Cabalin L, Laserna J (1995) Fast spatially resolved surface-enhanced Raman spectrometry on a silver coated filter paper using charge-coupled device detection. Anal Chim Acta 310:337–345

    Article  CAS  Google Scholar 

  • Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  • Cañamares M, Garcia-Ramos J, Gomez-Varga J, Domingo C, Sanchez-Cortes S (2007) Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes. Langmuir 23:5210–5215

    Article  CAS  PubMed  Google Scholar 

  • Carlsson DO, Lindh J, Nyholm L, Strømme M, Mihranyan A (2014) Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv 4:52289–52298

    Article  CAS  Google Scholar 

  • Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577

    Article  CAS  Google Scholar 

  • Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2014) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41

    Article  CAS  PubMed  Google Scholar 

  • Cerrutti P, Roldán P, García RM, Galvagno MA, Vázquez A, Foresti ML (2016) Production of bacterial nanocellulose from wine industry residues: importance of fermentation time on pellicle characteristics. J Appl Polym Sci 133:1–9

    Article  CAS  Google Scholar 

  • Chamuah N, Hazarika A, Hatiboruah D, Nath P (2017) SERS on paper: an extremely low cost technique to measure Raman signal. J Phys D Appl Phys 50:485601

    Article  CAS  Google Scholar 

  • Chen K, Leona M, Vo-Dinh KC, Yan F, Wabuyele MB, Vo-Dinh T (2006) Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art. J Raman Spectrosc 37:520–527

    Article  CAS  Google Scholar 

  • Chen P, Cui L, Zhang K (2015) Surface-enhanced Raman spectroscopy monitoring the development of dual-species biofouling on membrane surfaces. J Membr Sci 473:36–44

    Article  CAS  Google Scholar 

  • Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016a) Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88:2149–2155

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhu J, Baez C, Kitin P, Elder T (2016b) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    Article  CAS  Google Scholar 

  • Chen M, Yang H, Rong L, Chen X (2016c) A gas-diffusion microfluidic paper-based analytical device (μPAD) coupled with portable surface-enhanced Raman scattering (SERS): facile determination of sulphite in wines. Analyst 141:5511–5519

    Article  CAS  PubMed  Google Scholar 

  • Chen YW, Lee HV, Juan JC, Phang S-M (2016d) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang Z, Liu M, Qiu C, Yang H, Chen X (2017a) In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues. Talanta 165:313–320

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Zhang L, Li X, Ong L, Soe YG, Sinsua N, Gras SL, Tabor RF, Wang X, Shen W (2017b) Trace analysis and chemical identification on cellulose nanofibers-textured SERS substrates using the “coffee ring” effect. ACS Sens 2:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ge F, Guang S, Cai Z (2018) Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis. Appl Surf Sci 436:111–116

    Article  CAS  Google Scholar 

  • Chen J, Huang M, Kong L, Lin M (2019) Jellylike flexible nanocellulose SERS substrate for rapid in situ non-invasive pesticide detection in fruits/vegetables. Carbohydr Polym 205:596–600

    Article  CAS  PubMed  Google Scholar 

  • Cheng M-L, Tsai B-C, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708:89–96

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan E, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798

    Article  CAS  Google Scholar 

  • Chook SW, Chia CH, Chan CH, Chin SX, Zakaria S, Sajab MS, Huang NM (2015) A porous aerogel nanocomposite of silver nanoparticles-functionalized cellulose nanofibrils for SERS detection and catalytic degradation of rhodamine B. RSC Adv 5:88915–88920

    Article  CAS  Google Scholar 

  • Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc, Faraday Trans 75:790–798

    Article  CAS  Google Scholar 

  • Dai Z, Xiao X, Wu W, Liao L, Mei F, Yu X, Guo S, Ying J, Ren F, Jiang C (2014) Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering. Appl Phys Lett 105:211902

    Article  CAS  Google Scholar 

  • Dalla Marta S, Novara C, Giorgis F, Bonifacio A, Sergo V (2017) Optimization and characterization of paper-made surface enhanced Raman scattering (SERS) substrates with Au and Ag NPs for quantitative analysis. Materials 10:1365

    Article  CAS  PubMed Central  Google Scholar 

  • Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169

    Article  CAS  PubMed  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    Article  CAS  PubMed  Google Scholar 

  • Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090

    Article  CAS  Google Scholar 

  • Desmonda C, Kar S, Tai Y (2016) Formation of gold nanostructures on copier paper surface for cost effective SERS active substrate–effect of halide additives. Appl Surf Sci 367:362–369

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861

    Article  CAS  Google Scholar 

  • Ding L-P, Fang Y (2008) Influence of the microstructure of several substrates on the SERS effect of p-hyroxybenzoic absorbed on Ag nanoparticles. Colloids Surf A Physicochem Eng Aspects 316:253–257

    Article  CAS  Google Scholar 

  • Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16021

    Article  CAS  Google Scholar 

  • Doherty B, Brunetti B, Sgamellotti A, Miliani C (2011) A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc 42:1932–1938

    Article  CAS  Google Scholar 

  • Doherty B, Presciutti F, Sgamellotti A, Brunetti BG, Miliani C (2014) Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. J Raman Spectrosc 45:1153–1159

    Article  CAS  Google Scholar 

  • Dou B, Luo Y, Chen X, Shi B, Du Y, Gao Z, Zhao W, Lin B (2015) Direct measurement of beta-agonists in swine hair extract in multiplexed mode by surface-enhanced Raman spectroscopy and microfluidic paper. Electrophoresis 36:485–487

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Durucan O, Rindzevicius T, Schmidt MS, Matteucci M, Boisen A (2017) Nanopillar filters for surface-enhanced Raman spectroscopy. ACS Sens 2:1400–1404

    Article  CAS  PubMed  Google Scholar 

  • Enlow PD, Vo-Dinh T (1986) Detection of nitro-polynuclear aromatic compounds by surface-enhanced Raman spectrometry. Anal Chem 58:1119–1123

    Article  CAS  Google Scholar 

  • Eshkeiti A, Narakathu B, Reddy A, Moorthi A, Atashbar M, Rebrosova E, Rebros M, Joyce M (2012) Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sens Actuat B Chem 171:705–711

    Article  CAS  Google Scholar 

  • Fierro-Mercado PM, Hernández-Rivera SP (2012) Highly sensitive filter paper substrate for SERS trace explosives detection. Int J Spectrosc 2012:1–7

    Article  CAS  Google Scholar 

  • Fierro-Mercado P, Renteria-Beleño B, Hernández-Rivera S (2012) Preparation of SERS-active substrates using thermal inkjet technology. Chem Phys Lett 552:108–113

    Article  CAS  Google Scholar 

  • Figueroa M, Pourrezaei K, Tyagi S (2012) Fabrication of flexible and porous surface enhanced raman scattering (SERS) substrates using nanoparticle inks. In: AIP conference proceedings, vol 1. AIP, pp 47–53

  • Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  • Fornasaro S, Dalla Marta S, Rabusin M, Bonifacio A, Sergo V (2016) Toward SERS-based point-of-care approaches for therapeutic drug monitoring: the case of methotrexate. Faraday Discuss 187:485–499

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zheng P, Kasani S, Wu S, Yang F, Lewis S, Nayeem S, Engler-Chiurazzi EB, Wigginton JG, Simpkins JW (2017) Paper-based surface-enhanced Raman scattering lateral flow strip for detection of neuron-specific enolase in blood plasma. Anal Chem 89:10104–10110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38

    Article  CAS  Google Scholar 

  • Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M (2014) Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6:21931–21937

    Article  CAS  PubMed  Google Scholar 

  • Grasseschi D, Zamarion VM, Araki K, Toma HE (2010) Surface enhanced Raman scattering spot tests: a new insight on Feigl’s analysis using gold nanoparticles. Anal Chem 82:9146–9149

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Chen L, Tang J, Jönsson LJ, Hong FF (2016) Production of bacterial nanocellulose and enzyme from [AMIM] Cl-pretreated waste cotton fabrics: effects of dyes on enzymatic saccharification and nanocellulose production. J Chem Technol Biotechnol 91:1413–1421

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Han C, Li Y, Jia Q, Bradley LH, Gan Y, Yao Y, Qu L, Li H, Zhao Y (2017) On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk. Microchim Acta 184:2909–2917

    Article  CAS  Google Scholar 

  • Hassanain WA, Izake EL, Schmidt MS, Ayoko GA (2017a) Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens Bioelectron 91:664–672

    Article  CAS  PubMed  Google Scholar 

  • Hassanain WA, Izake EL, Sivanesan A, Ayoko GA (2017b) Towards interference free HPLC-SERS for the trace analysis of drug metabolites in biological fluids. J Pharm Biomed Anal 136:38–43

    Article  CAS  PubMed  Google Scholar 

  • Haynes CL, McFarland AD, Duyne RPV (2005a) Surface-enhanced Raman spectroscopy. Anal Chem 77:338A–364A

    Article  CAS  Google Scholar 

  • Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005b) Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J Raman Spectrosc 36:471–484

    Article  CAS  Google Scholar 

  • He S, Chua J, Tan EKM, Kah JCY (2017) Optimizing the SERS enhancement of a facile gold nanostar immobilized paper-based SERS substrate. RSC Adv 7:16264–16272

    Article  CAS  Google Scholar 

  • He L, Liu C, Tang J, Jin W, Yang H, Liu R, Hao X, Hu J (2018) Phase confinement of self-migrated plasmonic silver in triphasic system: offering 3D hot spots on hydrophobic paper for SERS detection. Appl Surf Sci 450:138–145

    Article  CAS  Google Scholar 

  • Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209

    Article  CAS  Google Scholar 

  • Henry A-I, Sharma B, Cardinal MF, Kurouski D, Van Duyne RP (2016) Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal Chem 88:6638–6647

    Article  CAS  PubMed  Google Scholar 

  • Hoppmann EP, Yu WW, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63:219–224

    Article  CAS  PubMed  Google Scholar 

  • Hoppmann EP, Yu WW, White IM (2014a) Inkjet-printed fluidic paper devices for chemical and biological analytics using surface enhanced Raman spectroscopy. IEEE J Sel Top Quant Electron 20:195–204

    Article  CAS  Google Scholar 

  • Hoppmann EP, Yu WW, White IM (2014b) Detection of deoxyribonucleic acid (DNA) targets using polymerase chain reaction (PCR) and paper surface-enhanced Raman spectroscopy (SERS) chromatography. Appl Spectrosc 68:909–915

    Article  CAS  PubMed  Google Scholar 

  • Hsieh Y-L (2013) Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48:7837–7846

    Article  CAS  Google Scholar 

  • Hu S-W, Qiao S, Pan J-B, Kang B, Xu J-J, Chen H-Y (2018) A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta 179:9–14

    Article  CAS  PubMed  Google Scholar 

  • Hua K, Carlsson DO, Ålander E, Lindström T, Strømme M, Mihranyan A, Ferraz N (2014) Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv 4:2892–2903

    Article  CAS  Google Scholar 

  • Hua K, Strømme M, Mihranyan A, Ferraz N (2015) Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose 22:3673–3688

    Article  CAS  Google Scholar 

  • Hua K, Rocha I, Zhang P, Gustafsson S, Ning Y, Strømme M, Mihranyan A, Ferraz N (2016) Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose. Biomacromol 17:1224–1233

    Article  CAS  Google Scholar 

  • Huang LB, Zhou Y, Han ST, Yan Y, Zhou L, Chen W, Zhou P, Chen X, Roy V (2014) Controlled assembly of silver nanoparticles monolayer on 3D polymer nanotubes and their applications. Small 10:4645–4650

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Siddhanta S, Zhang C, Kickler T, Zheng G, Barman I (2017) Painting and heating: a nonconventional, scalable route to sensitive biomolecular analysis with plasmon-enhanced spectroscopy. J Raman Spectrosc 48:1365–1374

    Article  CAS  Google Scholar 

  • Imai Y, Kurokawa Y, Hara M, Fukushima M (1997) Observation of SERS of picolinic acid and nicotinic acid using cellulose acetate films doped with Ag fine particles. Spectrochim Acta A 53:1697–1700

    Article  Google Scholar 

  • Imai Y, Tamai Y, Kurokawa Y (1998) Surface-enhanced Raman scattering of benzoic and thiosalicylic acids adsorbed on fine Ag particle-impregnated cellulose gel films. J Sol–Gel Sci Technol 11:273–278

    Article  CAS  Google Scholar 

  • Ishikawa H, Imai Y, Kurokawa Y (1995) Preparation of Ag particle-doped cellulose acetate gel membrane as a surface-enhanced Raman scattering active substrate. Vib Spectrosc 8:445–449

    Article  CAS  Google Scholar 

  • Jahn SF, Blaudeck T, Baumann RR, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P (2010) Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater 22:3067–3071

    Article  CAS  Google Scholar 

  • Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Hsieh Y-L (2014a) Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Hsieh Y-L (2014b) Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman Scattering. Biomacromol 15:3608–3616

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Joshi P, Santhanam V (2018) Inkjet-based fabrication process with control over the morphology of SERS-active silver nanostructures. Ind Eng Chem Res 57:5250–5258

    Article  CAS  Google Scholar 

  • Junka A, Fijałkowski K, Ząbek A, Mikołajewicz K, Chodaczek G, Szymczyk P, Smutnicka D, Żywicka A, Sedghizadeh PP, Dziadas M (2017) Correlation between type of alkali rinsing, cytotoxicity of bio-nanocellulose and presence of metabolites within cellulose membranes. Carbohydr Polym 157:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kalita E, Nath B, Deb P, Agan F, Islam MR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Chu J, Zhao H, Xu P, Sun M (2015) Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J Mater Chem C 3:9024–9037

    Article  CAS  Google Scholar 

  • Kang Y, Zhang H, Zhang L, Wu T, Sun L, Jiang D, Du Y (2017) In situ preparation of Ag nanoparticles by laser photoreduction as SERS substrate for determination of Hg2+. J Raman Spectrosc 48:399–404

    Article  CAS  Google Scholar 

  • Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  CAS  Google Scholar 

  • Ke Y, Meng G, Huang Z, Zhou N (2017) Electrosprayed large-area membranes of Ag-nanocubes embedded in cellulose acetate microspheres as homogeneous SERS substrates. J Mater Chem C 5:1402–1408

    Article  CAS  Google Scholar 

  • Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Kim Y-H, Park H-K, Choi S (2015) Facile fabrication of a silver nanoparticle immersed, surface-enhanced raman scattering imposed paper platform through successive ionic layer absorption and reaction for on-site bioassays. ACS Appl Mater Interfaces 7:27910–27917

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Twaddle KM, Cermak LM, Jang W, Yun J, Byun H (2016a) Photothermal heating property of gold nanoparticle loaded substrates and their SERS response. Colloids Surf A 498:20–29

    Article  CAS  Google Scholar 

  • Kim W-S, Shin J-H, Park H-K, Choi S (2016b) A low-cost, monometallic, surface-enhanced Raman scattering-functionalized paper platform for spot-on bioassays. Sens Actuators B Chem 222:1112–1118

    Article  CAS  Google Scholar 

  • Kim W, Lee J-C, Shin J-H, Jin K-H, Park H-K, Choi S (2016c) Instrument-free synthesizable fabrication of label-free optical biosensing paper strips for the early detection of infectious keratoconjunctivitides. Anal Chem 88:5531–5537

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Lee J-C, Lee G-J, Park H-K, Lee A, Choi S (2017) Low-cost label-free biosensing bimetallic cellulose strip with SILAR-synthesized silver core-gold shell nanoparticle structures. Anal Chem 89:6448–6454

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Ko Y, Kwon G, Choo Y-M, You J (2018a) Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sens Actuators B Chem 274:30–36

    Article  CAS  Google Scholar 

  • Kim W, Lee SH, Ahn YJ, Lee SH, Ryu J, Choi SK, Choi S (2018b) A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens Bioelectron 111:59–65

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Lee SH, Kim JH, Ahn YJ, Kim Y-H, Yu JS, Choi S (2018c) Based surface enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 12:7100–7108

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  • Kong X-M, Reza M, Ma Y-B, Hinestroza J-P, Ahvenniemi E, Vuorinen T (2015) Assembly of metal nanoparticles on regenerated fibers from wood sawdust and de-inked pulp: flexible substrates for surface enhanced Raman scattering (SERS) applications. Cellulose 22:3645–3655

    Article  CAS  Google Scholar 

  • Kumar V, Bollström R, Yang A, Chen Q, Chen G, Salminen P, Bousfield D, Toivakka M (2014) Comparison of nano-and microfibrillated cellulose films. Cellulose 21:3443–3456

    Article  CAS  Google Scholar 

  • Kurokawa Y, Imai Y (1991) Surface-enhanced Raman scattering (SERS) using polymer (cellulose acetate and Nafion) membranes impregnated with fine silver particles. J Membr Sci 55:227–233

    Article  CAS  Google Scholar 

  • Kurokawa Y, Imai Y, Tamai Y (1997) Surface-enhanced Raman Scattering observations on bipyridine, phthalimide, phenylethylamine and theobromine by using a fine silver particle-doped cellulose gel film. Analyst 122:941–944

    Article  CAS  Google Scholar 

  • Kwon G, Kim J, Kim D, Ko Y, Yamauchi Y, You J (2019) Nanoporous cellulose paper-based SERS platform for multiplex detection of hazardous pesticides. Cellulose 26:4935–4944

    Article  CAS  Google Scholar 

  • Lahr RH, Wallace GC, Vikesland PJ (2015) Raman characterization of nanoparticle transport in microfluidic paper-based analytical devices (μPADs). ACS Appl Mater Interfaces 7:9139–9146

    Article  CAS  PubMed  Google Scholar 

  • Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem 1:0060

    Article  CAS  Google Scholar 

  • Laserna J, Campiglia A, Winefordner J (1988) Surface-enhanced Raman spectrometry on a silver-coated filter paper substrate. Anal Chim Acta 208:21–30

    Article  CAS  Google Scholar 

  • Laserna JJ, Campiglia AD, Winefordner J (1989) Mixture analysis and quantitative determination of nitrogen-containing organic molecules by surface-enhanced Raman spectrometry. Anal Chem 61:1697–1701

    Article  CAS  PubMed  Google Scholar 

  • Laserna J, Sutherland W, Winefordner J (1990) Microspectrometric investigation of active substrates for surface enhanced Raman scattering. Anal Chim Acta 237:439–450

    Article  CAS  Google Scholar 

  • Lee AS, Li YS (1994) Surface-enhanced Raman spectra using silver-coated paper substrates. J Raman Spectrosc 25:209–214

    Article  CAS  Google Scholar 

  • Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2:3429–3435

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83:8953–8958

    Article  CAS  PubMed  Google Scholar 

  • Lee WW, Silverson VA, McCoy CP, Donnelly RF, Bell SE (2014) Preaggregated Ag nanoparticles in dry swellable gel films for off-the-shelf surface-enhanced Raman spectroscopy. Anal Chem 86:8106–8113

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Silverson V, Jones LE, Ho YC, Fletcher NC, McNaul M, Peters KL, Speers SJ, Bell SE (2016a) Surface-enhanced Raman spectroscopy of novel psychoactive substances using polymer-stabilized Ag nanoparticle aggregates. Chem Commun 52:493–496

    Article  CAS  Google Scholar 

  • Lee WW, McCoy CP, Donnelly RF, Bell SE (2016b) Swellable polymer films containing Au nanoparticles for point-of-care therapeutic drug monitoring using surface-enhanced Raman spectroscopy. Anal Chim Acta 912:111–116

    Article  CAS  PubMed  Google Scholar 

  • Lee J-C, Kim W, Park H-K, Choi S (2017) Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip. Spectrochim Acta A 174:37–43

    Article  CAS  Google Scholar 

  • Lee M, Oh K, Choi H-K, Lee SG, Youn HJ, Lee HL, Jeong DH (2018) Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens 3:151–159

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han X, Lay CL, Sim HYF, Kao Y-C, An Q, Ling XY (2019) Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev 48:731–756

    Article  CAS  PubMed  Google Scholar 

  • Leitch ME, Li C, Ikkala O, Mauter MS, Lowry GV (2016) Bacterial nanocellulose aerogel membranes: novel high-porosity materials for membrane distillation. Environ Sci Technol Lett 3:85–91

    Article  CAS  Google Scholar 

  • Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JH (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang W, Chen L, Lin B (2013a) A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device. Electrophoresis 34:2162–2168

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhao X, Huang Z, Liu S (2013b) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polym Res 20:1–7

    Google Scholar 

  • Li D, Zhu Q, Lv D, Zheng B, Liu Y, Chai Y, Lu F (2015) Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs. Anal Bioanal Chem 407:6031–6039

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang K, Zhao J, Ji J, Ji C, Liu B (2016) A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147:493–500

    Article  CAS  PubMed  Google Scholar 

  • Li D, Henschen J, Ek M (2017a) Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem 19:5564–5567

    Article  CAS  Google Scholar 

  • Li D, Lv DY, Zhu QX, Li H, Chen H, Wu MM, Chai YF, Lu F (2017b) Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device. Food Chem 224:382–389

    Article  CAS  PubMed  Google Scholar 

  • Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017c) Core–shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  PubMed  Google Scholar 

  • Li D, Duan H, Ma Y, Deng W (2018a) Headspace-sampling paper-based analytical device for colorimetric/surface-enhanced Raman scattering dual sensing of sulfur dioxide in wine. Anal Chem 90:5719–5727

    Article  CAS  PubMed  Google Scholar 

  • Li D, Ma Y, Duan H, Deng W, Li D (2018b) Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron 99:389–398

    Article  CAS  PubMed  Google Scholar 

  • Liao W-J, Roy PK, Chattopadhyay S (2014) An ink-jet printed, surface enhanced Raman scattering paper for food screening. RSC Adv 4:40487–40493

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Lin X, Lou X-T, Yang F, Lin D-Y, Lu Z-W (2014) Rapid fabrication of self-assembled interfacial film decorated filter paper as an excellent surface-enhanced Raman scattering substrate. Anal Methods 6:9547–9553

    Article  CAS  Google Scholar 

  • Lin S, Lin X, Lou X-T, Yang F, Lin D-Y, Lu Z-W (2015a) Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294

    Article  CAS  Google Scholar 

  • Lin X, Lou X-T, Lin S, Yang F, Lin D-Y, Lu Z-W (2015b) Chloride ion-assisted self-assembly of silver nanoparticles on filter paper as SERS substrate. Appl Phys A 118:799–807

    Article  CAS  Google Scholar 

  • Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang J, Wang B, Li Z, Huang H, Li C, Yu X, Chu PK (2014) Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosens Bioelectron 54:128–134

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724

    Article  CAS  PubMed  Google Scholar 

  • López-Lorente A, Simonet B, Valcárcel M, Mizaikoff B (2013) Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Anal Chim Acta 788:122–128

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Hsieh Y-L (2012a) Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym 87:2546–2553

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2012b) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Feng S, Liu X, Chen L (2013) Surface-enhanced Raman scattering study of silver nanoparticles prepared by using MC as a template. J Nanomater 2013:984831

    Google Scholar 

  • Luo Z, Fang Y (2005) SERS of C60/C70 on gold-coated filter paper or filter film influenced by the gold thickness. J Colloid Interface Sci 283:459–463

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Fang Y (2006a) Experimental (FT-IR) and theoretical (DFT) studies on the adsorption behavior of p-nitroaniline (PNA) on gold nanoparticales. J Nanopart Res 8:761–767

    Article  CAS  Google Scholar 

  • Ma W, Fang Y (2006b) Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles. J Colloid Interface Sci 303:1–8

    Article  CAS  PubMed  Google Scholar 

  • Man Z, Muhammad N, Sarwono A, Bustam MA, Kumar MV, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731

    Article  CAS  Google Scholar 

  • Marks H, Schechinger M, Garza J, Locke A, Coté G (2017) Surface enhanced raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nanophotonics 6:681–701

    Article  CAS  Google Scholar 

  • Marques PA, Nogueira HI, Pinto RJ, Neto CP, Trindade T (2008) Silver-bacterial cellulosic sponges as active SERS substrates. J Raman Spectrosc 39:439–443

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82I:3–10

    Google Scholar 

  • Maxwell EJ, Mazzeo AD, Whitesides GM (2013) Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull 38:309–314

    Article  CAS  Google Scholar 

  • McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837

    Article  CAS  PubMed  Google Scholar 

  • Mehn D, Morasso C, Vanna R, Bedoni M, Prosperi D, Gramatica F (2013) Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vib Spectrosc 68:45–50

    Article  CAS  Google Scholar 

  • Mekonnen ML, Su W-N, Chen C-H, Hwang B-J (2017) Ag@SiO2 nanocube loaded miniaturized filter paper as a hybrid flexible plasmonic SERS substrate for trace melamine detection. Anal Methods 9:6823–6829

    Article  CAS  Google Scholar 

  • Meng Y, Lai Y, Jiang X, Zhao Q, Zhan J (2013) Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection. Analyst 138:2090–2095

    Article  CAS  PubMed  Google Scholar 

  • Mishra SP, Thirree J, Manent A-S, Chabot B, Daneault C (2010) Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. BioResources 6:121–143

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mosier-Boss P (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7:142

    Article  CAS  PubMed Central  Google Scholar 

  • Mulvihill MJ, Ling XY, Henzie J, Yang P (2009) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132:268–274

    Article  CAS  Google Scholar 

  • Nabeela K, Thomas RT, Nair JB, Maiti KK, Warrier KGK, Pillai S (2016) TEMPO-oxidized nanocellulose fiber-directed stable aqueous suspension of plasmonic flower-like silver nanoconstruct for ultra-trace detection of analytes. ACS Appl Mater Interfaces 8:29242–29251

    Article  CAS  PubMed  Google Scholar 

  • Nam J-M, Oh J-W, Lee H, Suh YD (2016) Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc Chem Res 49:2746–2755

    Article  CAS  PubMed  Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle–paper as a three-dimensional surface enhanced raman scattering substrate. Langmuir 28:8782–8790

    Article  CAS  PubMed  Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2013a) Effect of cationic polyacrylamide dissolution on the adsorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloid Surf A 420:46–52

    Article  CAS  Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2013b) Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J Colloid Interface Sci 392:237–246

    Article  CAS  PubMed  Google Scholar 

  • Ngo YH, Then WL, Shen W, Garnier G (2013c) Gold nanoparticles paper as a SERS bio-diagnostic platform. J Colloid Interface Sci 409:59–65

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BH, Nguyen VH, Tran HN (2016) Rich variety of substrates for surface enhanced Raman spectroscopy. Adv Nat Sci Nanosci Nanotechnol 7:033001

    Article  CAS  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  • Niu Z, Fang Y (2006) Surface-enhanced Raman scattering of single-walled carbon nanotubes on silver-coated and gold-coated filter paper. J Colloid Interface Sci 303:224–228

    Article  CAS  PubMed  Google Scholar 

  • Ogundare SA, van Zyl WE (2018) Nanocrystalline cellulose as reducing-and stabilizing agent in the synthesis of silver nanoparticles: application as a surface-enhanced Raman scattering (SERS) substrate. Surf Interfaces 13:1–10

    Article  CAS  Google Scholar 

  • Ogundare SA, van Zyl WE (2019) Amplification of SERS “hot spots” by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloid Surf A 570:156–164

    Article  CAS  Google Scholar 

  • Ogundare SA, Moodley V, van Zyl WE (2017) Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohydr Polym 175:273–281

    Article  CAS  PubMed  Google Scholar 

  • Oh K, Lee M, Lee SG, Jung DH, Lee HL (2018) Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 25:3339–3350

    Article  CAS  Google Scholar 

  • Oliveira MJ, Quaresma P, De Almeida MP, Araújo A, Pereira E, Fortunato E, Martins R, Franco R, Águas H (2017) Office paper decorated with silver nanostars-an alternative cost effective platform for trace analyte detection by SERS. Sci Rep 7:2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oluwafemi OS, Mochochoko T, Leo AJ, Mohan S, Jumbam DN, Songca SP (2016) Microwave irradiation synthesis of silver nanoparticles using cellulose from Eichhornia crassipes plant shoot. Mater Lett 185:576–579

    Article  CAS  Google Scholar 

  • Oun AA, Rhim J-W (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492

    Article  CAS  PubMed  Google Scholar 

  • Panwar K, Jassal M, Agrawal AK (2017) Ag–SiO2 Janus particles based highly active SERS macroscopic substrates. Appl Surf Sci 411:368–373

    Article  CAS  Google Scholar 

  • Park M, Chang H, Jeong DH, Hyun J (2013) Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J 7:234–241

    Article  CAS  Google Scholar 

  • Park M, Hwang CSH, Jeong K-H (2017a) Nanoplasmonic alloy of Au/Ag nanocomposites on paper substrate for biosensing applications. ACS Appl Mater Interfaces 10:290–295

    Article  CAS  PubMed  Google Scholar 

  • Park M, Jung H, Jeong Y, Jeong K-H (2017b) Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced raman scattering. ACS Nano 11:438–443

    Article  CAS  PubMed  Google Scholar 

  • Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  • Polavarapu L, Liz-Marzán LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300

    Article  CAS  PubMed  Google Scholar 

  • Polavarapu L, Porta AL, Novikov SM, Coronado-Puchau M, Liz-Marzán LM (2014) Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10:3065–3071

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Xiao M, Wang X, Wang C, Wang L, Song S, Qu X, Li L, Shi J, Pei H (2017) DNA-encoded raman-active anisotropic nanoparticles for microRNA detection. Anal Chem 89:9850–9856

    Article  CAS  PubMed  Google Scholar 

  • Qu L-L, Li D-W, Xue J-Q, Zhai W-L, Fossey JS, Long Y-T (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881

    Article  CAS  PubMed  Google Scholar 

  • Qu L-L, Song Q-X, Li Y-T, Peng M-P, Li D-W, Chen L-X, Fossey JS, Long Y-T (2013) Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal Chim Acta 792:86–92

    Article  CAS  PubMed  Google Scholar 

  • Radziuk D, Moehwald H (2015) Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys Chem Chem Phys 17:21072–21093

    Article  CAS  PubMed  Google Scholar 

  • Rajapandiyan P, Yang J (2014) Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J Raman Spectrosc 45:574–580

    Article  CAS  Google Scholar 

  • Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501

    Article  CAS  Google Scholar 

  • Raza A, Saha B (2014) In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forens Sci Int 237:e42–e46

    Article  CAS  Google Scholar 

  • Ren S, Dong L, Zhang X, Lei T, Ehrenhauser F, Song K, Li M, Sun X, Wu Q (2017) Electrospun nanofibers made of silver nanoparticles, cellulose nanocrystals, and polyacrylonitrile as substrates for surface-enhanced Raman scattering. Materials 10:68

    Article  CAS  PubMed Central  Google Scholar 

  • Restaino SM, White IM (2018) A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta 1060:17–29

    Article  CAS  PubMed  Google Scholar 

  • Retko K, Ropret P, Cerc Korošec R (2014) Surface-enhanced Raman spectroscopy (SERS) analysis of organic colourants utilising a new UV-photoreduced substrate. J Raman Spectrosc 45:1140–1146

    Article  CAS  Google Scholar 

  • Retko K, Ropret P, Cerc Korošec R, Sanchez-Cortes S, Cañamares MV (2018) Characterization of HPC-based photoreduced SERS substrates and detection of different organic dyes. J Raman Spectrosc 49:1288–1300

    Article  CAS  Google Scholar 

  • Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In: Matheus P, Heitor LOJ (eds) Cellulose fundamental aspects and current trends. InTech, Rijeka. https://doi.org/10.5772/61334

    Chapter  Google Scholar 

  • Rosa M, Medeiros E, Malmonge J, Gregorski K, Wood D, Mattoso L, Glenn G, Orts W, Imam S (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  • Saha A, Jana NR (2014) Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. ACS Appl Mater Interfaces 7:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Sallum LF, Soares FLF, Ardila JA, Carneiro RL (2014a) Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper. Spectrochim Acta A 133:107–111

    Article  CAS  Google Scholar 

  • Sallum LF, Soares FLF, Ardila JA, Carneiro RL (2014b) Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta 118:353–358

    Article  CAS  PubMed  Google Scholar 

  • Satheeshkumar E, Karuppaiya P, Sivashanmugan K, Chao W-T, Tsay H-S, Yoshimura M (2017) Biocompatible 3D SERS substrate for trace detection of amino acids and melamine. Spectrochim Acta A 181:91–97

    Article  CAS  Google Scholar 

  • Saviello D, Alyami A, Trabace M, Giorgi R, Baglioni P, Mirabile A, Iacopino D (2018) Plasmonic colloidal pastes for surface-enhanced Raman spectroscopy (SERS) of historical felt-tip pens. RSC Adv 8:8365–8371

    Article  CAS  Google Scholar 

  • Schatz GC, Van Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. In: Griffiths P, Chalmers JM (eds) Handbook of vibrational spectroscopy. Willey, New York, pp 19–41

    Google Scholar 

  • Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53:4756–4795

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644

    Article  CAS  Google Scholar 

  • Semenova AA, Brazhe NA, Parshina EY, Sarycheva AS, Maksimov GV, Goodilin EA (2016) A new route for SERS analysis of intact erythrocytes using polydisperse silver nanoplatelets on biocompatible scaffolds. RSC Adv 6:85156–85164

    Article  CAS  Google Scholar 

  • Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Article  CAS  Google Scholar 

  • Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Kuneida H, Aramaki K (2008) Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym Sci 286:403–410

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Nishiyama Y, Iwamoto S, Yano H, Isogai A, Endo T (2016) Fast and robust nanocellulose width estimation using turbidimetry. Macromol Rapid Commun 37:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  Google Scholar 

  • Sutherland W, Winefordner J (1991) Preparation of substrates for surface-enhanced Raman microprobe spectroscopy. J Raman Spectrosc 22:541–549

    Article  CAS  Google Scholar 

  • Sutherland W, Laserna J, Winefordner J (1991) A spatial distribution study of analyte concentration in solid substrate surface-enhanced Raman spectroscopy. Spectrochim Acta A 47:329–337

    Article  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    Article  CAS  PubMed  Google Scholar 

  • Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Luan J, Liu K-K, Jiang Q, Tadepalli S, Gupta MK, Naik RR, Singamaneni S (2015) Plasmonic biofoam: a versatile optically active material. Nano Lett 16:609–616

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Jiang Q, Liu KK, Luan J, Naik RR, Singamaneni S (2016) Bacterial nanocellulose-based flexible surface enhanced raman scattering substrate. Adv Mater Interfaces 3:1600214

    Article  CAS  Google Scholar 

  • Torul H, Çiftçi H, Çetin D, Suludere Z, Boyacı IH, Tamer U (2015) Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal Bioanal Chem 407:8243–8251

    Article  CAS  PubMed  Google Scholar 

  • Tran CD (1984) Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry. Anal Chem 56:824–826

    Article  CAS  Google Scholar 

  • Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24:1537–1543

    CAS  Google Scholar 

  • Uetani K, Okada T, Oyama HT (2016) Thermally conductive and optically transparent flexible films with surface-exposed nanocellulose skeletons. J Mater Chem C 4:9697–9703

    Article  CAS  Google Scholar 

  • Van Duyne R, Hulteen J, Treichel D (1993) Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys 99:2101–2115

    Article  Google Scholar 

  • Villa JE, Poppi RJ (2016) A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 141:1966–1972

    Article  CAS  PubMed  Google Scholar 

  • Villa JE, Dos Santos DP, Poppi RJ (2016) Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 183:2745–2752

    Article  CAS  Google Scholar 

  • Vo-Dinh T, Hiromoto M, Begun G, Moody R (1984) Surface-enhanced Raman spectrometry for trace organic analysis. Anal Chem 56:1667–1670

    Article  CAS  Google Scholar 

  • Wang P, Fang Y (2008) The surface enhanced Raman spectroscopic study of the adsorption of C70 on the gold nanoparticles. J Chem Phys 129:134702

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhang L, Xia Y, Tong L, Xu X, Ying Y (2012a) Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. Nano Lett 12:3145–3150

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012b) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    Article  CAS  Google Scholar 

  • Wang C, Liu B, Dou X (2016) Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens Actuators B Chem 231:357–364

    Article  CAS  Google Scholar 

  • Wang K, Huang M, Chen J, Lin L, Kong L, Liu X, Wang H, Lin M (2018) A “drop-wipe-test” SERS method for rapid detection of pesticide residues in fruits. J Raman Spectrosc 49:493–498

    Article  CAS  Google Scholar 

  • Webb JA, Aufrecht J, Hungerford C, Bardhan R (2014) Ultrasensitive analyte detection with plasmonic paper dipsticks and swabs integrated with branched nanoantennas. J Mater Chem C 2:10446–10454

    Article  CAS  Google Scholar 

  • Wei W, Huang Q (2017) Rapid fabrication of silver nanoparticle-coated filter paper as SERS substrate for low-abundance molecules detection. Spectrochim Acta A 179:211–215

    Article  CAS  Google Scholar 

  • Wei W, Huang Q (2018) Preparation of cellophane-based substrate and its SERS performance on the detection of CV and acetamiprid. Spectrochim Acta A 193:8–13

    Article  CAS  Google Scholar 

  • Wei H, Vikesland PJ (2015) pH-triggered molecular alignment for reproducible SERS detection via an AuNP/nanocellulose platform. Sci Rep 5:18131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Rodriguez K, Renneckar S, Leng W, Vikesland PJ (2015) Preparation and evaluation of nanocellulose–gold nanoparticle nanocomposites for SERS applications. Analyst 140:5640–5649

    Article  CAS  PubMed  Google Scholar 

  • Weng G, Yang Y, Zhao J, Zhu J, Li J, Zhao J (2018) Preparation and SERS performance of Au NP/paper strips based on inkjet printing and seed mediated growth: the effect of silver ions. Solid State Commun 272:67–73

    Article  CAS  Google Scholar 

  • Wu D, Fang Y (2003) The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J Colloid Interface Sci 265:234–238

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Fang Y (2004) Surface-enhanced Raman scattering of a series of n-hydroxybenzoic acids (n = P, M and O) on the silver nano-particles. Spectrochim Acta A 60:1845–1852

    Article  CAS  Google Scholar 

  • Wu C-N, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13:1927–1932

    Article  CAS  Google Scholar 

  • Wu M, Li P, Zhu Q, Wu M, Li H, Lu F (2018) Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine. Spectrochim Acta A 196:110–116

    Article  CAS  Google Scholar 

  • Xiang Z, Gao W, Chen L, Lan W, Zhu J, Runge T (2016) A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose 23:493–503

    Article  CAS  Google Scholar 

  • Xiao G, Li Y, Shi W, Shen L, Chen Q, Huang L (2017) Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Appl Surf Sci 404:334–341

    Article  CAS  Google Scholar 

  • Xiong Z, Chen X, Liou P, Lin M (2017) Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 24:2801–2811

    Article  CAS  Google Scholar 

  • Xiong Z, Lin M, Lin H, Huang M (2018) Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr Polym 189:79–86

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Li W, Cheng Z, Yang G, Qin M (2013) TEMPO/NaBr/NaClO-mediated surface oxidation of nanocrystalline cellulose and its microparticulate retention system with cationic polyacrylamide. BioResources 9:994–1006

    Google Scholar 

  • Xu W, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C (2017) Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals. ChemNanoMat 3:109–119

    Article  CAS  Google Scholar 

  • Xu Y, Man P, Huo Y, Ning T, Li C, Man B, Yang C (2018) Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application. Sens Actuators B Chem 265:302–309

    Article  CAS  Google Scholar 

  • Yan B, Fang Y, Zhao X, Liang L (2014) A comparative study on the adsorption behaviors of PABA in the silver nano-particles. J Mol Struct 1074:660–665

    Article  CAS  Google Scholar 

  • Yan C-F, Yu H-Y, Yao J-M (2015) One-step extraction and functionalization of cellulose nanospheres from lyocell fibers with cellulose II crystal structure. Cellulose 22:3773–3788

    Article  CAS  Google Scholar 

  • Yang C, Xu Y, Wang M, Li T, Huo Y, Yang C, Man B (2018) Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection. Opt Express 26:10023–10037

    Article  CAS  PubMed  Google Scholar 

  • Yorov K, Grigorieva A, Sidorov A, Polyakov AY, Sukhorukova I, Shtansky D, Grünert W, Goodilin E (2016) Inkjet printing of silver rainbow colloids for SERS chips with polychromatic sensitivity. RSC Adv 6:15535–15540

    Article  CAS  Google Scholar 

  • Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WW, White IM (2012) A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 137:1168–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WW, White IM (2013a) Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 138:3679–3686

    Article  CAS  PubMed  Google Scholar 

  • Yu WW, White IM (2013b) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138:1020–1025

    Article  CAS  PubMed  Google Scholar 

  • Yu C-C, Chou S-Y, Tseng Y-C, Tseng S-C, Yen Y-T, Chen H-L (2015) Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 7:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Xu B-B, Liu X-Q, Zhang Y-L, Xu Y, Chen Q-D, Sun H-B (2012) Highly efficient SERS test strips. Chem Commun 48:5913–5915

    Article  CAS  Google Scholar 

  • Zhang D, Zhang Q, Gao X, Piao G (2013) A nanocellulose polypyrrole composite based on tunicate cellulose. Int J Polym Sci 2013:1–6

    Article  CAS  Google Scholar 

  • Zhang PP, Tong DS, Lin CX, Yang HM, Zhong ZK, Yu WH, Wang H, Zhou CH (2014a) Effects of acid treatments on bamboo cellulose nanocrystals. Asia-Pac J Chem Eng 9:686–695

    Article  CAS  Google Scholar 

  • Zhang W, Li B, Chen L, Wang Y, Gao D, Ma X, Wu A (2014b) Brushing, a simple way to fabricate SERS active paper substrates. Anal Methods 6:2066–2071

    Article  CAS  Google Scholar 

  • Zhang K, Zhao J, Xu H, Li Y, Ji J, Liu B (2015a) Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl Mater Interfaces 7:16767–16774

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li X, Ong L, Tabor RF, Bowen BA, Fernando AI, Nilghaz A, Garnier G, Gras SL, Wang X (2015b) Cellulose nanofibre textured SERS substrate. Colloids Surf A 468:309–314

    Article  CAS  Google Scholar 

  • Zhang S, Xiong R, Mahmoud MA, Quigley E, Chang H, El-Sayed MA, Tsukruk VV (2018) Dual-excitation nanocellulose-plasmonic membranes for molecular and cellular SERS detection. ACS Appl Mater Interfaces 10:18380–18389

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Gao Z, Luo Y, Liu X, Zhao W, Lin B (2016) Manual-slide-engaged paper chip for parallel SERS-immunoassay measurement of clenbuterol from swine hair. Electrophoresis 37:418–424

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yan H, He C, Lu M, Hao R (2013) Comparison of surface-enhanced Raman scattering spectra of azo dye sudan III on several substrates. Spectrosc Lett 46:615–619

    Article  CAS  Google Scholar 

  • Zhou X, Zhao Z, He Y, Ye Y, Zhou J, Zhang J, Ouyang Q, Tang B, Wang X (2018) Photoinduced synthesis of gold nanoparticle–bacterial cellulose nanocomposite and its application for in situ detection of trace concentration of dyes in textile and paper. Cellulose 25:3941–3953

    Article  CAS  Google Scholar 

  • Zhu H, Helander M, Moser C, Stahlkranz A, Soderberg D, Henriksson G, Lindstrom M (2012) A novel nanocellulose preparation method and size fraction by cross flow ultra-filtration. Curr Org Chem 16:1871–1875

    Article  CAS  Google Scholar 

  • Zhu Y, Li M, Yu D, Yang L (2014) A novel paper rag as ‘D-SERS’substrate for detection of pesticide residues at various peels. Talanta 128:117–124

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang L, Yang L (2015) Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Mater Res Bull 63:199–204

    Article  CAS  Google Scholar 

  • Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu J, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen Q, Kutsanedzie FY, Yang M, Ouyang Q, Jiang H (2017) Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal Methods 9:6186–6193

    Article  CAS  Google Scholar 

  • Zong C, Xu M, Xu L-J, Wei T, Ma X, Zheng X-S, Hu R, Ren B (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118:4946–4980

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SAO thanks Olabisi Onabanjo University, Ago-Iwoye, for granting of study leave to pursue the PhD programme at the University of KwaZulu-Natal. The authors thank the UKZN Nanotechnology Platform Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. van Zyl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogundare, S.A., van Zyl, W.E. A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 26, 6489–6528 (2019). https://doi.org/10.1007/s10570-019-02580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02580-0

Keywords

Navigation