Skip to main content
Log in

Characterization and analysis of the transcriptome response to drought in Larix kaempferi using PacBio full-length cDNA sequencing integrated with de novo RNA-seq reads

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A hypothetical model of drought tolerance mechanism of Larix kaempferi was established through SMRT-seq and Illumina HiSeq.

Abstract

Larix kaempferi is an important economic and ecological species and a major afforestation species in north-eastern China. To date, no information has been reliably derived regarding full-length cDNA sequencing information on L. kaempferi. By single-molecule long-read isoform sequencing (SMRT-seq), here we report a total of 26,153,342 subreads (21.24 Gb) and 330,371 circular consensus sequence (CCS) reads after the modification of site mismatch, and 35,414 unigenes were successfully collected. To gain deeper insights into the molecular mechanisms of L. kaempferi response to drought stress, we combined Illumina HiSeq with SMRT-seq to decode full-length transcripts. In this study, we report 27 differentially expressed genes (DEGs) involved in the perception and transmission of drought stress signals in L. kaempferi. A large number of DEGs responding to drought stress were detected in L. kaempferi, especially DEGs involved in the reactive oxygen species (ROS) scavenging, lignin biosynthesis, and sugar metabolism, and DEGs encoding drought stress proteins. We detected 73 transcription factors (TFs) under drought stress, including AP2/ERF, bZIP, TCP, and MYB. This study provides basic full sequence resources for L. kaempferi research and will help us to better understand the functions of drought-resistance genes in L. kaempferi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data from single-molecule long-read sequencing has been uploaded to the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under Bioproject PRJNA648500. The data from RNA-seq has been submitted in the NCBI GEO database, and the GEO Accession Number is GSE154534 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154534).

Abbreviations

AS:

Alternative splicing

DEG:

Differentially expressed gene

GST:

Glutathione S-transferase

SMRT-seq:

Single-molecule long-read isoform sequencing

TF:

Transcription factor

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aldon D, Mbengue M, Mazars C, Galaud JP (2018) Calcium signalling in plant biotic interactions. Int J Mol Sci 9(3):665

    Article  Google Scholar 

  • Ardui S, Ameur A, Vermeesch JR, Hestand MS (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46:2159–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  CAS  PubMed  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS (2018) Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V (2017) Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. Plant J 89:692–705

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Cai Z, Du H, Wang H (2019) Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. Int J Mol Sci 20(11):2762

    Article  CAS  PubMed Central  Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F (2020) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem 146:1–12

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE 7:e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espasandin FD, Maiale SJ, Calzadilla P, Ruiz OA, Sansberro PA (2014) Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem 76:29–35

    Article  CAS  PubMed  Google Scholar 

  • Feng XH, Zhang HX, Ali M, Gai WX, Cheng GX, Yu QH, Yang SB, Li XX, Gong ZH (2019) A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol Biochem 142:151–162

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  CAS  PubMed  Google Scholar 

  • Kalapos B, Dobrev P, Nagy T, Vitamvas P, Gyorgyey J, Kocsy G, Marincs F, Galiba G (2016) Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat. Plant Sci 253:86–97

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai M, Sun X, Chen D, Xie Y, Zhang S (2014) Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection. BMC Genet 15(Suppl 1):S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Fan F, Wang L, Zhan Q, Wu P, Du J, Yang X, Liu Y (2016) Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum. PeerJ 4:e2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang X, Tong B, Wang Y, Yang C (2020) Expression analysis of the BpARF genes in Betula platyphylla under drought stress. Plant Physiol Biochem 148:273–281

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Jiang Y, Wang C, Zhao L, Jin Y, Xing Q, Li M, Lv T, Qi H (2020) Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon (Cucumis melo L.) seedlings contributes to drought tolerance. Plant Mol Biol 103:689–704

    Article  CAS  PubMed  Google Scholar 

  • Luan S (2002) Signalling drought in guard cells. Plant Cell Environ 25:229–237

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Bu D, Sun L, Chen R, Zhao Y (2014) De novo approach to classify protein-coding and noncoding transcripts based on sequence composition. Methods Mol Biol 1182:203–207

    Article  PubMed  Google Scholar 

  • Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah M, Ghafoor A, Du X (2019) Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells 9(1):105

    Article  PubMed Central  Google Scholar 

  • Mukhopadhyay P, Tyagi AK (2015) OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 5:9998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persak H, Pitzschke A (2014) Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci 15:2517–2537

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinform 13:278–289

    Article  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2018) Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8:16496

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Liu W, Yao Y, Wei Y, Chan Z (2017) Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis. Plant Sci 262:24–31

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Vishwakarma RK, Arafat YA, Gupta SK, Khan BM (2015) Abiotic stress induces change in cinnamoyl CoA reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala. Physiol Mol Biol Plants 21:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X (2012) ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhao W, Liu H, Su C, Qian Y, Jiao F (2020) MaCDSP32 from mulberry enhances resilience post-drought by regulating antioxidant activity and the osmotic content in transgenic tobacco. Front Plant Sci 11:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J 16:354–366

    Article  CAS  PubMed  Google Scholar 

  • Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genom 11:3–11

    Article  CAS  Google Scholar 

  • Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V (2019) The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int J Mol Sci 21(1):114

    Article  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C (2018) The third revolution in sequencing technology. Trends Genet 34:666–681

    Article  PubMed  Google Scholar 

  • Vanholme R, De Meester B, Ralph J, Boerjan W (2019) Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 56:230–239

    Article  CAS  PubMed  Google Scholar 

  • Wahibah NN, Tsutsui T, Tamaoki D, Sato K, Nishiuchi T (2018) Expression of barley Glutathione S-Transferase13 gene reduces accumulation of reactive oxygen species by trichothecenes and paraquat in Arabidopsis plants. Plant Biotechnol (Tokyo) 35:71–79

    Article  CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang H, Wang Y, Ren F, Liu W (2018) Analysis of bHLH genes from foxtail millet (Setaria italica) and their potential relevance to drought stress. PLoS ONE 13:e207344

    Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim K, Kaya Z (2017) Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol Biochem 115:183–199

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, Costa A, Santelia D, Trost P, Sparla F (2016) beta-Amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot 67:1819–1826

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Sun M, Wang J, Lei M, Li C, Zhao D, Huang J, Li W, Li S, Li J, Yang J, Luo Y, Hu S, Zhang B (2019) PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice. Plant J 97:296–305

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, He L, Wang B, Liu QL, Pan YZ, Zhang F, Jiang BB, Zhang L, Liu GL, Jia Y (2018) Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by Illumina- and single-molecule real-time-based RNA sequencing. DNA Cell Biol 37:1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Su H, Lin R, Zhang H, Xia K, Jian S, Zhang M (2019) Isolation and characterization of an atypical LEA gene (IpLEA) from Ipomoea pes-caprae conferring salt/drought and oxidative stress tolerance. Sci Rep 9:14838

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge TopEdit LLC for the linguistic editing and proofreading during the preparation of this manuscript. This work was supported by the Genetically Modified Organisms Breeding Major Projects of China (Grant No. 2018ZX08020003), the 111 Project (B16010) and the Fundamental Research Funds for the Central Universities of China (2572018CL04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenghao Li or Jingli Yang.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 55 KB)

Supplementary file2 (XLS 611 KB)

Supplementary file3 (DOC 52 KB)

Supplementary file4 (DOC 144 KB)

Supplementary file5 (DOC 270 KB)

425_2020_3555_MOESM6_ESM.tif

Supplementary Fig. S1: Phenotypic variation of Larix kaempferi under drought stress. CK, well-watered control; D14, 14 days of drought treatment (tif 200247 KB)

425_2020_3555_MOESM7_ESM.tif

Supplementary Fig. S2: Gene ontology (GO) classification. GO was summarized as three main categories: cellular component (green), molecular function (red), and biological process (blue). The number (Y-axis) of genes were also shown (tif 40330 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lee, J., Yu, S. et al. Characterization and analysis of the transcriptome response to drought in Larix kaempferi using PacBio full-length cDNA sequencing integrated with de novo RNA-seq reads. Planta 253, 28 (2021). https://doi.org/10.1007/s00425-020-03555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03555-3

Keywords

Navigation