Skip to main content

Advertisement

Log in

Sacha inchi (Plukenetia volubilis L.)—from lost crop of the Incas to part of the solution to global challenges?

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The underutilized, oleaginous crop Plukenetia volubilis L. has a remarkable lipid composition and a large potential for further domestication, alleviation of malnutrition, and integration into sustainable food production systems.

Abstract

Current global challenges include climate change, increasing population size, lack of food security, malnutrition, and degradation of arable lands. In this context, a reformation of our food production systems is imperative. Underutilized crops, or orphan crops, can provide valuable traits for this purpose, e.g., climate change resilience, nutritional benefits, cultivability on marginal lands, and improvement of income opportunities for smallholders. Plukenetia volubilis L. (Euphorbiaceae)—sacha inchi—is a ‘lost crop’ of the Incas native to the Amazon basin. Its oleaginous seeds are large, with a high content of ω-3, and -6 fatty acids (ca. 50.5, and 34.1%, of the lipid fraction, respectively), protein, and antioxidants. Culinarily, the seeds are nut-like and the crop has been associated with humans since Incan times. Research has particularly been undertaken in seed biochemistry, and to some extent in phylogeny, genetics, and cultivation ecology, but attention has been unevenly distributed, causing knowledge gaps in areas such as ethnobotany, allergenicity, and sustainable cultivation practices. Recently, seed size evolution and molecular drivers of the fatty acid synthesis and composition have been studied, however, further research into the lipid biosynthesis is desirable. Targeted breeding has not been undertaken but might be especially relevant for yield, sensory qualities, and cultivation with low environmental impact. Similarly, studies of integration into sustainable management systems are of highest importance. Here, present knowledge on P. volubilis is reviewed and a general framework for conducting research on underutilized crops with the aim of integration into sustainable food production systems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data adapted from USDA (2019a, b, c), and Follegatti-Romero et al. (2009)

Fig. 4

adapted from Wang and Liu (2014), e reproduced from Wang and Liu (2014)

Fig. 5

adapted from Cardinal-McTeague et al. (2019). Seed outlines of P. decidua, P. ankaranensis, and P. corniculata are drawn from Gillespie (2007), P. conophora from Isawumi (1993), and P. polyadenia and P. brachybotrya from Rodríguez et al. (2010)

Fig. 6

Similar content being viewed by others

References

  • Aguilar JL, Paico SRD, Lozada-Requena IA, Cabello MA (2015) Comparative evaluation of the anti-inflammatory effect of two varieties of “Sacha Inchi” (Plukenetia volubilis and Plukenetia huayllabambana) in mice. Front Immunol. https://doi.org/10.3389/conf.fimmu.2015.05.00349

    Article  Google Scholar 

  • Aiama D, Edwards S, Bos G, Ekstrom J, Krueger L, Quétier F, Savy C, Semroc B, Sneary M, Bennun L (2015) No net loss and net positive impact approaches for biodiversity: exploring the potential application of these approaches in the commercial agriculture and forestry sectors. IUCN, Gland

    Google Scholar 

  • Akintayo ET, Bayer E (2002) Characterisation and some possible uses of Plukenetia conophora and Adenopus breviflorus seeds and seed oils. Biores Technol 85:95–97

    CAS  Google Scholar 

  • Alayón AN, Echeverri IJ (2016) Sacha Inchi (Plukenetia volubilis linneo): ¿una experiencia ancestral desaprovechada? Evidencias clínicas asociadas a su consume. Rev Chil Nutr 43(2):167–171

    Google Scholar 

  • Araújo-Dairiki TB, Chaves FCM, Dairiki JK (2018) Seeds of sacha inchi (Plukenetia volubilis, Euphorbiaceae) as a feed ingredient for juvenile tambaqui, Colossoma macropomum, and matrinxã, Brycon amazonicus (Characidae). Acta Amazónica 48(1):32–37

    Google Scholar 

  • Arévalo GG (1995) El cultivo del Sacha Inchi (Plukenetia volubilis L) en la Amazonía. Programa Nacional de Investigación en Recursos Genéticos y Biotecnología (PRONARGEB), Tarapoto

    Google Scholar 

  • Barrera OR (2007) Propagación sexual y clonal de sacha inchi (Plukenetia volubilis L.) bajo condiciones in vitro. Universidad Nacional de san Martín, Tarapoto

    Google Scholar 

  • Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. an overview of the last decade. Molecules 12:1679–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal HY, Correa JEQ (1992) Especies vegetales promisorias de los países del Convenio Andrés Bello, vol 7. Secretaría Ejecutiva del Convenio Andrés Bello, Bogotá

    Google Scholar 

  • Boneti JEB, Barros RT, Melo LF, Lopes MTG, Martins CC (2013) Temperature effects on the germination of Plukenetia volubilis L. seeds. Universidade Estadual Paulista, São Paulo

    Google Scholar 

  • Bordignon SR, Ambrosano GMB, Rodrigues PHV (2012) Propagaҫão in vitro de Sacha Inchi. Ciência Rural Santa Maria 42(7):1168–1172

    CAS  Google Scholar 

  • Bozan B, Temelli F (2008) Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Biores Technol 99:6354–6359

    CAS  Google Scholar 

  • Brack EA (1999) Diccionario Enciclopedico de Plantas Utiles del Peru. P. 400. PNUD, Cuzco

    Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    CAS  Google Scholar 

  • Bueso A, Rodríguez-Perez R, Rodríguez M, Dionicio J, Pérez-Pimiento A, Caballero ML (2010) Occupational allergic rhinoconjunctivitis and bronchial asthma induced by Plukenetia volubilis seeds. Occup Environ Med 67:797–798

    PubMed  Google Scholar 

  • Burdge GC, Calder PC (2005) Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597

    CAS  PubMed  Google Scholar 

  • Burr GO, Burr MM (1930) On the nature and role of the fatty acids essential in nutrition. J Biol Chem 82:345–367

    Google Scholar 

  • Bussmann RW, Téllez C, Glenn A (2009) Plukenetia huayllabambana sp. nov. (Euphorbiaceae) from the upper Amazon of Peru. Nord J Bot 27:313–315

    Google Scholar 

  • Bussmann RW, Zambrana NP, Téllez C (2013) Plukenetia carolis-vegae (Euphorbiaceae)—a new useful species from Northern Peru. Econ Bot 67(4):387–392

    Google Scholar 

  • Cachique DH (2006) Biología Floral y Reproductiva de Plukenetia volubilis L. (Euphorbiaceae)—(Sacha Inchi). Universidad Nacional de San Martín, Tarapoto

    Google Scholar 

  • Cachique D, Rodriguez Á, Ruiz-Solsol H, Vallejos G, Solis R (2011) Propagacion vegetativa del sacha inchi (Plukenetia volubilis L.) mediante enraizamiento de estacas juveniles en cámaras de subirrigación en la Amazonia Peruana. Folia Amazónica 20(1–2):95–100

    Google Scholar 

  • Cachique DH, Solsol HR, Sanchez MAG, López LAA, Kodahl N (2018) Vegetative propagation of the underutilized oilseed crop sacha inchi (Plukenetia volubilis L.). Genet Resour Crop Evol 65:2027–2036

    Google Scholar 

  • Cai ZQ (2011) Shade delayed flowering and decreased photosynthesis, growth and yield of Sacha Inchi (Plukenetia volubilis) plants. Ind Crops Prod 34:1235–1237

    Google Scholar 

  • Cai ZQ, Jiao DY, Tang SX, Dao XS, Lei YB, Cai CT (2012) Leaf photosynthesis, growth, and seed chemicals of Sacha Inchi plants cultivated along an altitude gradient. Crop Sci 52:1859–1867

    CAS  Google Scholar 

  • Cai ZQ, Jiao DY, Lei YB, Xiang MH, Li WG (2013a) Growth and yield responses of Plukenetia volubilis L. plants to planting density. J Hortic Sci Biotechnol 88(4):421–426

    Google Scholar 

  • Cai ZQ, Zhang T, Jian HY (2013b) Chromosome number variation in a promising oilseed woody crop, Plukenetia volubilis L. (Euphorbiaceae). Caryologia 66(1):54–58. https://doi.org/10.1080/00087114.2013.780442

    Article  Google Scholar 

  • Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr. https://doi.org/10.3945/jn.111.155259

    Article  PubMed  Google Scholar 

  • Cardinal-McTeague WM, Gillespie LJ (2016) Molecular phylogeny and pollen evolution of Euphorbiaceae Tribe Plukenetieae. Syst Bot 41(2):329–347

    Google Scholar 

  • Cardinal-McTeague WM, Wurdack KJ, Sigel EM, Gillespie LJ (2019) Seed size evolution and biogeography of Plukenetia (Euphorbiaceae), a pantropical genus with traditionally cultivated oilseed species. BMC Evol Biol 19:29

    PubMed  PubMed Central  Google Scholar 

  • Cardoso AÁ, Obolari AMM, Borges EEL, Silva CJ, Rodrigues HS (2015) Environmental factors on seed germination, seedling survival and initial growth of sacha inchi (Plukenetia volubilis L). J Seed Sci 37(2):111–116

    Google Scholar 

  • Caro LAP, Zumaqué LEO, Violeth JLB (2017) Efecto de la micorrización y el lombriabono sobre el crecimiento y desarrollo del Sacha inchi Plukenetia volubilis L. Temas Agrarios 23(1):18–28

    Google Scholar 

  • Caterina R (2011) n-3 Fatty acids in cardiovascular disease. N Engl J Med 364:2439–2450

    PubMed  Google Scholar 

  • Čepková PH, Jágr M, Viehmannová I, Dvorácek V, Cachique DH, Miksik I (2019) Diversity in seed storage protein profile of oilseed crop Plukenetia volubilis L. from Peruvian Amazon. Int J Agric Biol. https://doi.org/10.17957/IJAB/15.0945

    Article  Google Scholar 

  • Chandrasekaran U, Liu A (2014) Stage-specific metabolization of triacylglycerols during seed germination of Sacha Inchi (Plukenetia volubilis L.). J Sci Food Agric 95:1764–1766

    PubMed  Google Scholar 

  • Chandrasekaran U, Wang X, Liu A (2013) Characterization, expression profiling and heterologous function analysis of Two Oleosin Genes PvOle1 and PvOle2 from Sacha Inchi (Plukenetia volubilis). Int J Agric Biol 15:435–442

    CAS  Google Scholar 

  • Chirinos R, Zuloeta G, Pedreschi R, Mignolet E, Larondelle Y, Campos D (2013) Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem 141:1732–1739

    CAS  PubMed  Google Scholar 

  • Chirinos R, Pedreschi R, Cedano I, Campos D (2015a) Antioxidants from mashua (Tropaeolum tuberosum) control lipid oxidation in sacha inchi (Plukenetia volubilis L.) oil and raw ground pork meat. J Food Process Preserv 39:2612–2619

    CAS  Google Scholar 

  • Chirinos R, Pedreschi R, Domínguez G, Campos D (2015b) Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chem 173:1203–1206

    CAS  PubMed  Google Scholar 

  • Chirinos R, Aquino M, Pedreschi R, Campos D (2016a) Optimized methodology for alkaline and enzyme-assisted extraction of protein from sacha inchi (Plukenetia volubilis) kernel cake. J Food Process Eng. https://doi.org/10.1111/jfpe.12412

    Article  Google Scholar 

  • Chirinos R, Necochea O, Pedreschi R, Campos D (2016b) Sacha inchi (Plukenetia volubilis L.) shell: an alternative source of phenolic compounds and antioxidants. Int J Food Sci Technol 51:986–993

    CAS  Google Scholar 

  • Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217

    Google Scholar 

  • Cisneros FH, Paredes D, Arana A, Cisneros-Zevallos L (2014) Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-Inchi (Plukenetia volubilis L.). J Agric Food Chem 62:5191–5197

    CAS  PubMed  Google Scholar 

  • Clavijo DB, Rodríguez FV, Estupiñán JEC (2015) Utilización de plukenetia volubilis (sacha inchi) para mejorar los componentes nutricionales de la hamburguesa. Enfoque UTE 6(2):59–76

    Google Scholar 

  • Corazon-Guivin M, Rodríguez Á, Cachique D, Chota W, Vásquez G, Del-Castillo D, Renno J-F, García-Dávila C (2008) Diversidad genética en poblactiones naturales de sacha inchi Plukenetia volubilis L. (Euphorbiaceae) en el departamento de San Martín (Perú). Folia Amazónica 17(1–2):83–90

    Google Scholar 

  • Corazon-Guivin M, Castro-Ruiz D, Chota-Macuyama W, Rodríguez Á, Cachique D, Manco E, Del-Castillo D, Renno J-F, García-Dávila C (2009) Caracterización genética de accesiones SanMartinenses del banco nacional de germoplasma de sacha inchi Plukenetia volubilis L. (E.E. El Porvenir—INIA). Folia Amazónica 18(1–2):23–31

    Google Scholar 

  • Crist E, Mora C, Engelman R (2017) The interaction of human population, food production, and biodiversity protection. Science 356:260–264

    CAS  PubMed  Google Scholar 

  • Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8:1789. https://doi.org/10.3389/fpls.2017.01789

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez MT (2016) Flavonoides extraídos de la cascara de naranja tangelo (Citrus reticulata × Citrus paradisi) y su aplicación como antioxidante natural en el aceite vegetal sacha inchi (Plukenetia volubilis). Scientia Agropecuaria 7(4):419–431

    Google Scholar 

  • Drover J, Birch EE, Hoffman DR, Castañeda YS, Morale SE (2009) Three randomized controlled trials of early long-chain polyunsaturated fatty acid supplementation on means-end problem solving in 9-month-olds. Child Dev 80(5):1376–1384

    PubMed  PubMed Central  Google Scholar 

  • Drover JR, Hoffman DR, Castañeda YS, Morale SE, Garfield S, Wheaton DH, Birch EE (2010) Cognitive function in 18-month-old term infants of the DIAMOND study: a randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum Dev 87:223–230

    Google Scholar 

  • Elera DJ, Cubero GA, Rodríguez M, Lopez M, Vasquez A (2009) Occupational asthma in a cosmetic industry worker caused by inca peanut (Plukenetia volubilis linneo): new insights into risk factors of occupational allergy, the authors journal compilation. Allergy 64(90):179–538

    Google Scholar 

  • Fanali C, Dugo L, Cacciola F, Beccaria M, Grasso S, Dachà M, Dugo P, Mondello L (2011) Chemical characterization of Sacha Inchi (Plukenetia volubilis L.) Oil. J Agric Food Chem 59:13043–13049

    CAS  PubMed  Google Scholar 

  • Fernández Y, Obregón A, Medina M, Martínez E, Navarro E (2015) Obtaining cheese with milk mixture and inca peanut (Plukenetia volubilis). J Chem Chem Eng 9:533–537

    Google Scholar 

  • Flores D (2010) Uso Histórico: Sacha Inchi Plukenetia volúbilis L. Proyecto Perubiodiverso, Perú

    Google Scholar 

  • Flores D, Lock O (2013) Revalorizando el uso milenario del sacha inchi (Plukenetia volubilis L) para la nutrición, la salud y la cosmética. Revista de Fitoterapia 13(1):23–30

    Google Scholar 

  • Follegatti-Romero LA, Piantino CA, Grimaldi R, Fernando AC (2009) Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. J Supercrit Fluids 49:323–329

    CAS  Google Scholar 

  • Food Safety Authority of Ireland (2012) Substantial equivalence opinion—Inca Inchi Virgin Oil. Food Safety Authority of Ireland, Ireland

    Google Scholar 

  • Franco-Quino C, Muñoz-Espinoza D, Gómez-Herreros C, Chau-Miranda G, Cueva-Piña L, Guardia-Ortiz E, Saavedra-Yucra S, Arroyo-Acevedo J, Herrera-Calderón O (2016) Caracteristicas fitoquímicas y capacidad antioxidante in vitro de Aloe vera, Plukenetia volubilis, Caiophora carduifolia. Cecropia membranácea An Fac Med 77(1):9–13

    Google Scholar 

  • Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, Keck PE, Marangell LB, Richardson AJ, Lake J, Stoll AL (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67:1954–1967

    CAS  PubMed  Google Scholar 

  • Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Sci 44:6–29

    CAS  Google Scholar 

  • Funabashi M (2016) Synecological farming: theoretical foundation on biodiversity responses of plant communities. Plant Biotechnol 33:213–234

    Google Scholar 

  • Funabashi M (2018) Human augmentation of ecosystems: objectives for food production and science by 2045. NPJ Sci Food 2:16. https://doi.org/10.1038/s41538-018-0026-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Q, Niu L, Zhang Q, Pan B-Z, He H, Xu Z-F (2014) Benzyladenine treatment promotes floral feminization and fruiting in a promising oilseed crop Plukenetia volubilis. Ind Crops Prod 59:295–298. https://doi.org/10.1016/j.indcrop.2014.05.028

    Article  CAS  Google Scholar 

  • Fu Q, Niu L, Chen M-S, Tao Y-B, Wang X, He H, Pan B-Z, Xu Z-F (2018) De novo transcriptome assembly and comparative analysis between male and benzyladenine-induced female inflorescence buds of Plukenetia volubilis. J Plant Physiol 221:107–118

    CAS  PubMed  Google Scholar 

  • Garcia-Ayala J, Villa-Lavy J, Mori-Pinedo L (2012) Efecto de cuatro niveles protéicos provenientes de la harina de sacha inchi Plukenetia volubilis (Euphorbiaceae) en el crecimiento de alevinos de banda negra Myleus schomburgkii (Pisces, Serrasalmidae) criados en cautiverio. Folia Amazónica 21(1–2):53–62

    Google Scholar 

  • Garmendia F, Pando R, Ronceros G (2011) Efecto del aceite de sacha inchi (Plukenetia volubilis L.) sobre el perfil lipídico en pacientes con hiperlipoproteinemia. Rev Peru Med Exp Salud Publica 28(4):628–632

    PubMed  Google Scholar 

  • Gillespie LJ (1993) A synopsis of neotropical Plukenetia (Euphorbiaceae) including two new species. Syst Bot 18(4):575–592

    Google Scholar 

  • Gillespie LJ (1994) Pollen morphology and phylogeny of the Tribe Plukenetieae (Euphorbiaceae). Ann Mol Bot Gard 81(2):317–348

    Google Scholar 

  • Gillespie LJ (2007) A revision of Paleotropical Plukenetia (Euphorbiaceae) including two new species from Madagascar. Syst Bot 32(4):780–802

    Google Scholar 

  • Glick NR, Fischer MH (2013) The role of essential fatty acids in human health. J Evid Based Complement Altern Med 18(4):268–289

    CAS  Google Scholar 

  • Gong HD, Geng YJ, Yang C, Jiao DY, Chen L, Cai ZQ (2018) Yield and resource use efficiency of Plukenetia volubilis plants at two distinct growth stages as affected by irrigation and fertilization. Sci Rep. https://doi.org/10.1038/s41598-017-18342-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales-Aspajo G, Belkhelfa H, Haddioui-Hbabi L, Bourdy G, Deharo E (2015) Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. J Ethnopharmacol 171:330–334

    Google Scholar 

  • Gonzales GF, Gonzales C (2014) A randomized, double-blind placebo-controlled study on acceptability, safety and efficacy of oral administration of sacha inchi oil (Plukenetia volubilis L.) in adult human subjects. Food Chem Toxicol 65:168–176

    CAS  PubMed  Google Scholar 

  • Gonzales GF, Gonzales C, Villegas L (2014) Exposure of fatty acids after a single oral administration of sacha inchi (Plukenetia volubilis L.) and sunflower oil in human adult subjects. Toxicol Mech Methods 24(1):60–69

    CAS  PubMed  Google Scholar 

  • Gonzales GF, Tello J, Zevallos-Concha A, Baquerizo L, Caballero L (2018) Nitrogen balance after a single oral consumption of sacha inchi (Plukenetia volubilis L.) protein compared to soy protein: a randomized study in humans. Toxicol Mech Methods 28(2):140–147

    CAS  PubMed  Google Scholar 

  • Gorriti A, Arroyo J, Quispe F, Cisneros B, Condorhuamán M, Almora Y, Chumpitaz V (2010) Toxicidad oral a 60 días del aceite de sacha inchi (Plukenetia volubilis L.) y linaza (Linum usitatissimum L.) y determinación de la dosis letal 50 en roedores. Rev Peru Med Exp Salud Publica 27(3):352–360

    PubMed  Google Scholar 

  • Guevara JV, Rojas SM, Carcelén FC, Seminario LS (2016) Enriquecimiento de la Carne de Cuy (Cavia porcellus) con Ácidos Grasos Omega-3 Mediante Dietas con Aceite de Pescado y Semillas de Sacha Inchi (Plukenetia volubilis). Rev Inv Vet Perú 27(1):45–50

    Google Scholar 

  • Guillén MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. JAOCS 80(8):755–762

    Google Scholar 

  • Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Gutiérrez L-P, Rosada L-M, Jiménez A (2011) Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas Aceites 62(1):76–83

    Google Scholar 

  • Hamaker BR, Valles C, Gilman R, Hardmeier RM, Clark D, Garcia HH, Gonzales AE, Kohlstad I, Castro M, Valdivia R, Rodriguez T, Lescano M (1992) Amino acid and fatty acid profiles of the inca peanut (Plukenetia volubilis). Cereal Chem 69(4):461–463

    CAS  Google Scholar 

  • Hanssen H-P, Schmitz-Hübsch M (2011) Sacha Inchi (Plukenetia volubilis L.) nut oil and its therapeutic and nutritional uses. Nuts Seeds Health Dis Prev. https://doi.org/10.1016/B978-0-12-375688-6.10117-3

    Article  Google Scholar 

  • Hernández-Mijares A, Bañuls C, Rocha M, Morillas C, Martínez-Triguero ML, Víctor VM, Lacomba R, Alegría A, Barberá R, Farré R, Lagarda MJ (2010) Effects of phytosterol ester-enriched low-fat milk on serum lipoprotein profile in mildly hypercholesterolaemic patients are not related to dietary cholesterol or saturated fat intake. Br J Nutr 104:1018–1025

    PubMed  Google Scholar 

  • Hu X-D, Pan B-Z, Fu Q, Chen M-S, Xu Z-F (2018) The complete chloroplast genome sequence of the biofuel plant Sacha Inchi, Plukenetia volubilis. Mitochondrial DNA Part B Resour 3(1):328–329

    Google Scholar 

  • Isawumi MA (1993) The common edible fruits of Nigeria. Nigerian Field 58(1, 2):157–171 (Cited in: Janick J, Paull RE (2008) The Encyclopedia of Fruit and Nuts. CABI, Oxfordshire)

    Google Scholar 

  • Jacobsen S-E, Sørensen M, Pedersen SM, Weiner J (2015) Using our agrobiodiversity: plant-based solutions to feed the world. Agron Sustain Dev 35:1217–1235

    Google Scholar 

  • Jáuregui AM, Escudero FR, Ortiz-UReta CA, Castañeda BC, Mendoza EB, Farfán JY, Asencios DC (2010) Evaluación del contenido de fitoesteroles, compuestos fenólicos y métodos químicos para determiner la actividad antioxidante en semilla de sacha inchi (Plukenetia volubilis L.). Rev Soc Quím Perú 76(3):234–241

    Google Scholar 

  • Jeromini TS, Barbosa ASV, Silva GZ, Martins CC (2018) Substrate and seed sowing position on the production of Plukenetia volubilis L. seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental 22(6):396–400

    Google Scholar 

  • Jiao DY, Tan YH, Tang SX, Dao XS, Cai ZQ (2011) Ecological Characteristics of germination of Plukenetia volubilis seeds. J Trop Subtrop Bot 19(6):529–535

    Google Scholar 

  • Jiao DY, Xiang MH, Li WG, Cai ZQ (2012) Dry-season irrigation and fertilisation affect the growth, reproduction, and seed traits of Plukenetia volubilis L. plants in a tropical region. J Hortic Sci Biotechnol 87(4):311–316. https://doi.org/10.1080/14620316.2012.11512870

    Article  CAS  Google Scholar 

  • Jiménez JR (1993) Especie nueva de Plukenetia (Euphorbiaceae) del estado de Oaxaca, México. Anales Inst Biol Univ Nac Autón México Ser Bot 64(2):55–58

    Google Scholar 

  • Jump DB, Depner CM, Tripathy S (2012) Omega-3 fatty acid supplementation and cardiovascular disease. J Lipid Res 53:2525–2545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahane R, Hodgkin T, Jaenicke H, Hoogendoorn C, Hermann M, Keatinge JDH, Hughes JA, Padulosi S, Looney N (2013) Agrobiodiversity for food security, health and income. Agron Sustain Dev 33:671–693

    Google Scholar 

  • Kew RBG (2016) State of the worlds plants report—2016. Royal Botanic Gardens, Kew

    Google Scholar 

  • Kew RBG (2017) State of the worlds plants report—2017. Royal Botanic Gardens, Kew

    Google Scholar 

  • Khodakovskaya M, Macavoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast [omega]-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223(5):1090–1100

    CAS  PubMed  Google Scholar 

  • Kodahl N, García-Dávila CR, Cachique D, Sørensen M, Lütken H (2018) An in vitro seed germination protocol for Plukenetia volubilis L. Acta Hortic. https://doi.org/10.17660/ActaHortic.2018.1201.73

    Article  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105:601–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krivankova B, Cepkova PH, Ocelak M, Juton G, Bechyne M, Lojka B (2012) Preliminary study of diversity of Plukenetia volubilis based on the morphological and genetic characteristics. Agricultura Tropica y Subtropica 45(3):140–146

    Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014a) Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silvernanocatalyst: an ecofriendly approach. Ind Crops Prod 58:238–243

    CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014b) Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J Biol Sci 21:605–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2016a) One pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: green approach. J Photochem Photobiol B 158:55–60

    CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Sánchez E, Stael C, Cumbal L (2016b) Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as newbiosorbents for Pb2+ and Cu2+ ions. Ecol Eng 93:152–158

    Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2017) Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J Saudi Chem Soc 21:293–298

    Google Scholar 

  • Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94

    CAS  PubMed  Google Scholar 

  • Leal-Castañeda EJ, Inchingolo R, Cardenia V, Hernandez-Becerra JA, Romani S, Rodriguez-Estrada MT, Galindo HSG (2015) Effect of microwave heating on phytosterol oxidation. J Agric Food Chem 63:5539–5547

    PubMed  Google Scholar 

  • Lei Y-B, Zheng Y-L, Dai K-J, Duan B-L, Cai Z-Q (2014) Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. Trees 28:923–933

    CAS  Google Scholar 

  • Lenné JM, Wood D (2011) Agrobiodiversity management for food security. CABI, Oxfordshire

    Google Scholar 

  • Liu Q, Xu YK, Zhang P, Na Z, Tang T, Shi YX (2014) Chemical composition and oxidative evolution of Sacha Inchi (Plukentia volubilis L.) oil from Xishuangbanna (China). Grasas Aceites. https://doi.org/10.3989/gya.075713

    Article  Google Scholar 

  • Loaiza MEE (2013) Manejo Agroecologico del Cultivo de Sacha Inchi (Plukenetia volubilis L.). Universidad Agraria del Ecuador, Guayaquil

    Google Scholar 

  • Lung S-C, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41(12):1073–1088

    CAS  PubMed  Google Scholar 

  • Lu Y, Chi M, Li L, Li H, Noman M, Yang Y, Ji K, Lan X, Qiang W, Du L, Li H, Yang J (2018) Genome-wide identification, expression profiling, and functional validation of oleosin gene family in Carthamus tinctorius L. Front Plant Sci 9:1393

    PubMed  PubMed Central  Google Scholar 

  • Manco EIC (2006) Cultivo de sacha inchi. Instituto Nacional de Investigación y Extensión Agraria, Tarapoto, Perú

    Google Scholar 

  • Maurer NE, Hatta-Sakoda B, Pascual-Chagman G, Rodriguez-Saona LE (2012) Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem 134:1173–1180

    CAS  PubMed  Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63(3):1075–1079

    CAS  PubMed  Google Scholar 

  • Meyer RS, Purugganan M (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    CAS  PubMed  Google Scholar 

  • Mota AS, de Lima AB, Albuquerque TLF, Silveira TS, do Nascimento JLM, da Silva JKR, Ribeiro AF, Maia JGS, Bastos GNT (2015) Antinociceptive activity and toxicity evaluation of the fatty oil from Plukenetia polyadenia Mull. Arg. (Euphorbiaceae). Molecules 20:7925–7939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Wu JHY (2011) Omega-3 fatty acids and cardiovascular disease - effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58(20):2047–2067

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nascimento AKL, Melo-Silveira RF, Dantas-Santos N, Fernandes JM, Zucolotto SM, Rocha HAO, Scortecci KC (2013) Antioxidant and antiproliferative activities of leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae). Evid Based Complement Altern Med. https://doi.org/10.1155/2013/950272

    Article  Google Scholar 

  • Niu L, Li J, Chen M-S, Xu Z-F (2014) Determination of oil contents in Sacha inchi (Plukenetia volubilis) seeds at different developmental stages by two methods: soxhlet extraction and time-domain nuclear magnetic resonance. Ind Crops Prod 56:187–190

    CAS  Google Scholar 

  • Nusselder H, Cloesen P (2014) Noble seeds: Sacha inchi from Amazonia to the Caribbean Basin? In: Nusselder H (ed) Un recorrido por líneas locales. Aportes para políticas públicas en el sector rural de Centroamérica, el Caribe y la Región Andina. Centro de Estudios para el Desarrollo Rural, Costa Rica, pp 5–14

    Google Scholar 

  • Ocelák M, Cepková PH, Viehmannová I, Dvoráková Z, Huansi DC, Lojka B (2015) Genetic diversity of Plukenetia volubilis L assessed by ISSR markers. Scientia Agriculturae Bohemica 46(4):145–153

    Google Scholar 

  • Oliveira SAG, Lopes MTG, Chaves FCM, Martins CC, Alves EU (2013) Estimation of genetic parameters of Plukenetia volubilis L. seed germination. Amazon J Agric Environ Sci 56:49–54

    Google Scholar 

  • Padulosi S, Amaya K, Jäger M, Gotor E, Rojas W, Valdivia R (2014) A holistic approach to enhance the use of neglected and underutilized species: the case of andean grains in Bolivia and Peru. Sustainability 6:1283–1312. https://doi.org/10.3390/su6031283

    Article  Google Scholar 

  • Palozza P, Krinsky NI (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. Methods Enzymol 213:403–420

    CAS  PubMed  Google Scholar 

  • Pastuña-Pullutasig A, Lopéz-Hernández O, Debut A, Vaca A, Rodríguez-Leyes E, Vicente R, Gonzalez V, González-Sanabia M, Tapia-Hernández F (2016) Microencapsulación de aceite de sacha inchi (Plukenetia volubilis L.) mediante secado por aspersion. Rev Colomb Cienc Quím Farm 45(3):422–437

    Google Scholar 

  • Perúbiodiverso P (2009) Manual de producción de sacha inchi para el biocomercio y la agroforestería sostenible. Lima, Perú

    Google Scholar 

  • Rajwade AV, Kadoo NY, Borikar SP, Harsulkar AM, Ghorpade PB, Gupta VS (2014) Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in a-linolenic acid content. Phytochemistry 98:41–53

    CAS  PubMed  Google Scholar 

  • Rauf S, Jamil N, Tariq SA, Khan M, Kausar M, Kaya Y (2017) Progress in modification of sunflower oil to expand its industrial value. J Sci Food Agric 97:1997–2006

    CAS  PubMed  Google Scholar 

  • Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B 105:342–352

    CAS  Google Scholar 

  • Reátegui VQ, Flores JM, Ramírez JCH, Yalta RV, Manrique JAA, D’Azevedo GG, Pinedo JN, Bardales JM, Machuca GE, Rengifo OM, Rengifo DV, D’Azevedo AKR (2010) Evaluación de la Torta de Sacha Inchi (Plukenetia volubilis) y su uso como fuente alternativa y proteica en la alimentación de pollos de engorde y gallinas de postura en Zungaro Cocha—UNAP. Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos

    Google Scholar 

  • Rodrigues HS, Oliveira AB, Lopes MTG, Chaves FCM, Bentes JLS (2013) Genetic diversity of sacha inchi accessions detected by AFLP molecular markers. Rev Cienc Agrar 56:55–60

    Google Scholar 

  • Rodrigues PHV, Bordignon SR, Ambrosano GMB (2014) Desempenho horticultural de plantas propagadas in vitro de Sacha inchi. Ciência Rural, Santa Maria 44(6):1050–1053

    Google Scholar 

  • Rodrigues HS, Borém A, Valente MSF, Lopes MTG, Cruz CD, Chaves FCM, Bezerra CS (2018) Genetic diversity among accessions of sacha inchi (Plukenetia volubilis) by phenotypic characteristics analysis. Acta Amazonica 48:93–97

    Google Scholar 

  • Rodríguez Á, Corazon-Guivin M, Cachique D, Mejia K, Castillo D, Renno J-F, Garcia-Dávila C (2010) Diferenciación morfológica y por ISSR (Inter simple sequence repeats) de especies del género Plukenetia (Euphorbiaceae) de la Amazonía peruana: propuesta de una nueva especie. Rev Peru Biol 17(3):325–330

    Google Scholar 

  • Rodríguez G, Villanueva E, Glorio P, Baquerizo M (2015) Estabilidad oxidativa y estimación de la vida útil del aceite de sacha inchi (Plukenetia volubilis L.). Scientia Agropecuaria 6(3):155–163

    Google Scholar 

  • Rosa R, Quijada J (2013) Germination of sacha inchi, Plukenetia volubilis L. (McBride, 1951) (Malpighiales, Euphorbiaceae), under four different conditions. Biologist (Lima) 11(1):9–14

    Google Scholar 

  • Ruiz C, Diaz C, Anaya J, Rojas R (2013) Análisis proximal, antinutrientes, perfil de ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de sacha inchi (Plukenetia volubilis y Plukenetia huayllabambana). Rev Soc Quím Perú 79(1):29–36

    CAS  Google Scholar 

  • Saavedra EFC, Viera SFC, Alfaro CER (2010) Estudio fitoquímico de Plukenetia volubilis L. y su efecto antioxidante en la lipoperoxidación inducida por Fe3+/ascorbato en hígado de Rattus rattus var. albinus. UCV Scientia 2(1):11–21

    Google Scholar 

  • Sanchez-Reinoso Z, Gutiérrez L-F (2017) Effects of the emulsion composition on the physical properties and oxidative stability of Sacha Inchi (Plukenetia volubilis L.) oil microcapsules produced by spray drying. Food Bioprocess Technol 10:1354–1366

    CAS  Google Scholar 

  • Sathe SK, Hamaker BR, Sze-Tao KWC, Venkatachalam M (2002) Isolation, purification, and biochemical characterization of a novel water soluble protein from inca peanut (Plukenetia volubilis L.). J Agric Food Chem 50:4906–4908

    CAS  PubMed  Google Scholar 

  • Sathe SK, Kshirsagar HH, Sharma GM (2012) Solubilization, fractionation, and electrophoretic characterization of inca peanut (Plukenetia volubilis L.) proteins. Plant Foods Hum Nutr 67:247–255

    CAS  PubMed  Google Scholar 

  • Schmidt S, Pokorný J (2005) Potential application of oilseeds as sources of antioxidants for food lipids—a review. Czech J Food Sci 23(3):93–102

    CAS  Google Scholar 

  • Schulz B, Becker B, Götsch E (1994) Indigenous knowledge in a 'modern' sustainable agroforestry system—a case study from eastern Brazil. Agrofor Syst 25:59–69

    Google Scholar 

  • Shahidi F, Shukla VKS (1996) Nontriacylglycerol constituents of fats, oils. INFORM 7(11):1227–1232

    Google Scholar 

  • Silva GZ, Vieira VAC, Boneti JEB, Melo LF, Martins CC (2016) Temperature and substrate on Plukenetia volubilis L. seed germination. Revista Brasileira de Engenharia Agrícola e Ambiental 20(11):1031–1035

    Google Scholar 

  • Sinclair AJ, Attar-Bashi NM, Li D (2002) What is the role of α-linolenic acid for mammals? Lipids 37(12):1113–1123

    CAS  PubMed  Google Scholar 

  • Sogbohossou EOD, Achigan-Dako EG, Maundu P, Solberg S, Deguenon EMS, Mumm RH, Hale I, Deynze AV, Schranz ME (2018) A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). Hortic Res 5:2. https://doi.org/10.1038/s41438-017-0001-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza AHP, Gohara AK, Rodrigues AC, Souza NE, Visentainer JV, Matsushita M (2013) Sacha inchi as potential source of essential fatty acids and tocopherols: multivariate study of nut and shell. Acta Sci Technol 35(4):757–763

    Google Scholar 

  • Srichamnong W, Ting P, Pitchakarn P, Nuchuchua O, Temviriyanukul P (2018) Safety assessment of Plukenetia volubilis (Inca peanut) seeds, leaves, and their products. Food Sci Nutr. https://doi.org/10.1002/fsn3.633

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterbova L, Cepkova PH, Viehmannova I, Cachique DH (2016) Effect of thermal processing on phenolic content, tocopherols and antioxidant activity of sacha inchi kernels. J Food Process Preserv. https://doi.org/10.1111/jfpp.12848

    Article  Google Scholar 

  • Takeyama E, Fukushima M (2013) Physicochemical properties of Plukenetia volubilis L. seeds and oxidative stability of cold-pressed oil (green nut oil). Food Sci Technol Res 19(5):875–882

    CAS  Google Scholar 

  • Tchiegang C, Kapseu C, Parmentier M (2001) Chemical composition of oil from Tetracarpidium conophorum ((Müll. Arg.) Hutch. and Dalz.) nuts. J Food Lipids 8:95–102

    CAS  Google Scholar 

  • Terán-Hilares R, Chirinos R, Pedreschi R, Campos D (2018) Enhanced antioxidant properties of tara (Caesalpinia spinosa) gallotannins by thermal hydrolysis and its synergistic effects with a-tocopherol, ascorbyl palmitate, and citric acid on sacha inchi (Plukenetia volubilis) oil. J Food Process Eng 41:e12613. https://doi.org/10.1111/jfpe.12613

    Article  CAS  Google Scholar 

  • Tian YH, Lei YB, Zheng YL, Cai ZQ (2013) Synergistic effect of colonization with arbuscular mycorrhizal fungi improves growth and drought tolerance of Plukenetia volubilis seedlings. Acta Physiol Plant 35:687–696

    CAS  Google Scholar 

  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522

    CAS  PubMed  Google Scholar 

  • Torres MAB (2010) Estudio de la ploidía en Plukenetia volubilis L. (Sacha Inchi). Universidad Nacional de San Martín, Tarapoto

    Google Scholar 

  • Triana-Maldonado DM, Torijano-Gutiérrez SA, Giraldo-Estrada C (2017) Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia Colombia. Grasas Aceites. https://doi.org/10.3989/gya.0786161

    Article  Google Scholar 

  • UN General Assembly (2015) Transforming our world: the 2030 Agenda for sustainable development, A/RES/70/1. https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E. Accessed 16 Feb 2020

  • USDA (2019a) Olive oil. US Department of Agriculture FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/343873/nutrients. Accessed 9 July 2019

  • USDA (2019b) Rapeseed oil. US Department of Agriculture FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/343875/nutrients. Accessed 9 July 2019

  • USDA (2019c) Oil, flaxseed, cold pressed. US Department of Agriculture FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/167702/nutrients. Accessed 9 July 2019

  • Valente MSF, Lopes MTG, Chaves FCM, Pantoja MC, Sousa FMG, Chagas EA (2017) Molecular genetic diversity and mating system in sacha inchi progenies. Pesq Agropec Trop 47(4):480–487

    Google Scholar 

  • Valente MSF, Chaves FCM, Lopes MTG, Oka JM, Rodrigues RAF (2017) Crop yield, genetic parameter estimation and selection of sacha inchi in central Amazon. Pesq Agropec Trop Goiânia 47(2):226–236

    Google Scholar 

  • Valenzuela RB, Barrera CR, González-Astorga M, Sanhueza JC, Valenzuela AB (2014) Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat. Food Funct 5:1564–1572

    Google Scholar 

  • Vanegas-Azuero A-M, Gutiérrez L-P (2018) Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. J Dairy Sci 101(2):1020–1033

    CAS  PubMed  Google Scholar 

  • Vasěk J, Cepková PH, Viehmannova I, Ocelák M, Cachique DH, Vejl P (2017) Dealing with AFLP genotyping errors to reveal genetic structure in Plukenetia volubilis (Euphorbiaceae) in the Peruvian Amazon. PLoS ONE 12(9):e0184259. https://doi.org/10.1371/journal.pone.0184259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente J, Cezarino TS, Pereira LJB, Rocha EP, Sá GR, Gamallo OD, Carvalho MG, Garcia-Rojas EE (2017) Microencapsulation of sacha inchi oil using emulsion-based delivery systems. Food Res Int 99:612–622

    CAS  PubMed  Google Scholar 

  • Wakjira A, Labuschagne MT, Hugo A (2004) Variability in oil content and fatty acid composition of Ethiopian and introduced cultivars of linseed. J Sci Food Agric 84:601–607

    CAS  Google Scholar 

  • Wang X, Liu A (2014) Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of sacha inchi (Plukenetia volubilis L.). Lipids 49:1019–1031

    CAS  PubMed  Google Scholar 

  • Wang X, Xu R, Wang R, Liu A (2012) Transcriptome analysis of sacha inchi (Plukenetia volubilis L.) seeds at two developmental stages. BMC Genom 13:716

    Google Scholar 

  • Webster GL (1975) Conspectus of a new classification of the Euphorbiaceae. Taxon 24(5/6):593–601

    Google Scholar 

  • Wu Z, Wang B, Chen X, Wu J, King GJ, Xiao Y, Liu K (2016) Evaluation of linkage disequilibrium pattern and association study on seed oil content in brassica napus using ddRAD sequencing. PLoS ONE. https://doi.org/10.1371/journal.pone.0146383

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Jiao DY, Geng YJ, Cai CT, Cai ZQ (2014) Planting density and fertilisation independently affect seed and oil yields in Plukenetia volubilis L. plants. J Hortic Sci Biotechnol 89(2):201–207. https://doi.org/10.1080/14620316.2014.11513069

    Article  Google Scholar 

  • Yang C, Jiao DY, Cai ZQ (2016) Vegetative and reproductive growth and yield of Plukenetia volubilis plants in responses to foliar application of plant growth regulators. Hortic Sci 51(8):1020–1025

    CAS  Google Scholar 

  • Zambrano JCH, Cruz OTB (2016) Recursos y nuevas opciones en la alimentación animal: torta de sacha inchi (Plukenetia volubilis). Revista de Investigación Agraria y Ambiental 7(1):83–92

    Google Scholar 

  • Zanqui AB, Silva CM, Morais DR, Santos JM, Ribeiro SAO, Eberlin MN, Cardozo-Filho L, Visentainer JV, Gomes STM, Matsushita M (2016) Sacha inchi (Plukenetia volubilis L.) oil composition varies with changes in temperature and pressure in subcritical extraction with n-propane. Ind Crops Prod 87:64–70

    CAS  Google Scholar 

  • Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE. https://doi.org/10.1371/journal.pone.0030355

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuleta EC, Rios LA, Benjumea PN (2012) Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends. Fuel Process Technol 102:96–101

    CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful for the cooperation of Danter Cachique Huansi, Carmen Rosa Garcia Davila (Instituto de Investigaciones de la Amazonía Perúana, Perú), and Nelly Judith Paredes Andrade (Instituto Nacional de Investigaciones Agropecuarias, Ecuador). Further, Marten Sørensen and Henrik Lütken (Department of Plant and Environmental Sciences, University of Copenhagen, Denmark) are thanked for fruitful discussions during manuscript preparation. The work of the author is supported by Svend G. Fiedler and Spouse’s stipend, Torben and Alice Frimodt’s scholarship and the Oticon foundation, for which I am also truly thankful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nete Kodahl.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodahl, N. Sacha inchi (Plukenetia volubilis L.)—from lost crop of the Incas to part of the solution to global challenges?. Planta 251, 80 (2020). https://doi.org/10.1007/s00425-020-03377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03377-3

Keywords

Navigation