Skip to main content

Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop

  • Chapter
  • First Online:
Global Agricultural Production: Resilience to Climate Change

Abstract

High population shifts and climate change are putting thrust on the food industry, especially edible oil production. Monoculture of high-input crops certainly affects the crop yield and soil health. The import of edible oil is increasing in the major part of the world, putting some burden on the national exchequer of the countries. The current oil crops are unable to meet the deficit to address the problems; a crop with distinct features must be incorporated in the cropping system. [Camelina sativa (L.) Crantz], a unique profiled biodiesel crop, is famous as gold of pleasure, and its oil is famous as a golden liquid. Camelina oil is an outstanding feedstock for the bio-based industry since its unique composition allows multiple applications. It is a rich source of oil >43%, which comprises a huge amount of unsaturated fatty acids, which accounts for 90%, containing 30–40% of alpha-linolenic acid and 15–25% of linoleic acid. The revival of this unique oilseed crop was based on (a) numerous inherent promising physiognomies, vigorous agronomic characteristics, eye-catching oil profile, genetic continuity with Arabidopsis, and the comfort of genetic remodeling by floral dip; (b) the investment in camelina which is understood as it merits serious considerations as potential biodiesel and oilseed and which shares a big role toward the sustainability along with increasing the diversity and production of plant oils; and (c) a univocal and descriptive portrayal of the different growth stages of camelina which will be used as an important apparatus for agronomy and research. In this review, the extended BBCH (Biologische Bundesanstalt, Bundessortenamt, and Chemische Industrie) scale was used to describe the phenological stages. The best use of camelina in the industrial sector as a drop-in product of packing materials, coatings, and adhesions can be achieved by further research to enlarge the camelina market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas RN, Iqbal A, Iqbal MA, Ali OM, Ahmed R, Ijaz R, Hadifa A, Bethune BJ (2021a) Weed-free durations and fertilization regimes boost nutrient uptake and paddy yield of direct-seeded fine rice (Oryza sativa L.). Agronomy 11:2448

    Article  CAS  Google Scholar 

  • Abbas RN, Arshad MA, Iqbal A, Iqbal MA, Imran M, Raza A, Chen JT, Alyemeni MN, Hefft DI (2021b) Weeds spectrum, productivity and land-use efficiency in maize-gram intercropping systems under semi-arid environment. Agronomy 11:1615

    Article  Google Scholar 

  • Abramovič H, Abram V (2005) Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol Biotechnol 43(1):63–70

    Google Scholar 

  • Abramovič H, Butinar B, Nikolič V (2007) Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem 104(3):903–909. https://doi.org/10.1016/j.foodchem.2006.12.044

    Article  CAS  Google Scholar 

  • Abro AA (2012) Determinants of crop diversification towards high value crops in Pakistan. Int J Bus Manag Econ Res 3(3):536–545

    Google Scholar 

  • Adhikari PA, Heo JM, Nyachoti CM (2016) Standardized total tract digestibility of phosphorus in Camelina (Camelina sativa) meal fed to growing pigs without or phytase supplementation. Anim Feed Sci Technol 214:104–109. https://doi.org/10.1016/j.anifeedsci.2016.02.018

    Article  CAS  Google Scholar 

  • Ahmad Z, Waraich EA, Barutcular C, Alharby H, Bamagoos A, Kizilgeci F, Öztürk F, Hossain A, Bayoumi Y, El Sabagh A (2020) Enhancing drought tolerance in Camelina sativa L. and canola (Brassica napus L.) through application of selenium. Pak J Bot 52(6):1927–1939

    Article  CAS  Google Scholar 

  • Ahmad Z, Anjum S, Skalicky M, Waraich EA, Tariq RMS, Ayub MA, Hossain A, Hassan MM, Brestic M, Sohidul IM, Rahman MH, Allah W, Iqbal MA, Ayman A (2021) Selenium alleviates the adverse effect of drought in oilseed crops Camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules 26:1699

    Article  CAS  Google Scholar 

  • Alice P, Sands DC, Boss D, Dale N, Wichmann D, Lamb P, Lu C, Barrows R, Kirkpatrick M, Thompson B, Johnson DL (2007) Camelina sativa, a Montana omega-3 and fuel crop. In: Janick J, Whipkey A (eds) Issues in New Crops and New Uses. ASHS Press, Alexandria, pp 129–131

    Google Scholar 

  • Alina I, Roman G (2009) Research on morphological and biological peculiarities of Camelina sativa (l.) Crantz species under the conditions of the central part of Roumanian plain. Sci Pap Ser LII:344

    Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259(2-4):89–120. https://doi.org/10.1007/s00606-006-0415-z

    Article  Google Scholar 

  • Amiri-Darban N, Nourmohammadi G, Rad AHS, Mirhadi SMJ, Heravan IM (2020) Potassium sulfate and ammonium sulfate affect quality and quantity of Camelina oil grown with different irrigation regimes. Ind Crop Prod 148:112308

    Article  CAS  Google Scholar 

  • Anderson JV, Wittenberg A, Li H, Berti MT (2019) High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Ind Crop Prod 137:501–507

    Article  CAS  Google Scholar 

  • Angelini L, Moscheni E (1998) Camelina (Camelina sativa [L.] Crantz). In: Mosca G (ed) Oleaginose non Alimentari. Edagricole, Bologna, pp 82–85

    Google Scholar 

  • Bătrîna ȘL, Jurcoane Ș, Popescu I, Marin F, Imbrea IM, Crista F, Pop G, Imbrea F (2020) Camelina sativa: a study on amino acid content. Biotechnol Lett 25(1):1136–1142

    Article  Google Scholar 

  • Belayneh HD, Wehling RL, Cahoon E, Ciftci ON (2015) Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J Supercrit Fluids 104:153–159. https://doi.org/10.1016/j.supflu.2015.06.002

    Article  CAS  Google Scholar 

  • Bernardo A, Howard-Hildige R, O’Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy JJ (2003) Camelina oil as a fuel for diesel transport engines. Ind Crop Prod 17(3):191–197. https://doi.org/10.1016/S0926-6690(02)00098-5

    Article  CAS  Google Scholar 

  • Berti M, Wilckens R, Fischer S, Solis A, Johnson B (2011) Seeding date influence on Camelina seed yield, yield components, and oil content in Chile. Ind Crop Prod 34(2):1358–1365. https://doi.org/10.1016/j.indcrop.2010.12.008

    Article  Google Scholar 

  • Berti M, Gesch R, Eynck C, Anderson J, Cermak S (2016) Camelina uses, genetics, genomics, production, and management. Ind Crop Prod 94:690–710. https://doi.org/10.1016/j.indcrop.2016.09.034

    Article  CAS  Google Scholar 

  • Blanco G et al (2014) Agriculture, forestry, other land use: drivers, trends and mitigation (archived 30 December 2014). In: IPCC AR5 WG3 2014, p 383. Emissions aggregated using 100-year global warming potentials from the IPCC Second Assessment Report

    Google Scholar 

  • Booman M, Xu Q, Rise ML (2014) Evaluation of the impact of Camelina oil-containing diets on the expression of genes involved in the innate anti-viral immune response in Atlantic cod (Gadus morhua). Fish Shellfish Immunol 41(1):52–63. https://doi.org/10.1016/j.fsi.2014.05.017

    Article  CAS  Google Scholar 

  • Borzoo S, Mohsenzadeh S, Moradshahi A, Kahrizi D, Zamani H, Zarei M (2020) Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis:1–12

    Google Scholar 

  • BP (2017) BP statistical review of world energy. British Petroleum, London

    Google Scholar 

  • Browne LM, Conn KL, Ayert WA, Tewari JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 47(24):3909–3914. https://doi.org/10.1016/S0040-4020(01)86431-0

    Article  CAS  Google Scholar 

  • Brunt A, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L (1996) Viruses of plants: descriptions and lists from the VIDE database. CAB International, Wallingford, 1504 pp

    Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of Camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72(3):309–315. https://doi.org/10.1007/BF02541088

    Article  CAS  Google Scholar 

  • Bullerwell CN, Collins SA, Lall SP, Anderson DM (2016) Growth performance, proximate and histological analysis of rainbow trout fed diets containing Camelina sativa seeds, meal (high-oil and solvent-extracted) and oil. Aquaculture 452:342–350. https://doi.org/10.1016/j.aquaculture.2015.11.008

    Article  CAS  Google Scholar 

  • Cao Y, Gu Z, Muthukumarappan K, Gibbons W (2015) Separation of glucosinolates from Camelina seed meal via membrane and acidic aluminum oxide column. J Liquid Chromat Relat Technol 38(13):1273–1278. https://doi.org/10.1080/10826076.2015.1037454

    Article  CAS  Google Scholar 

  • Cappellozza BI, Cooke RF, Bohnert DW, Cherian G, Carroll JA (2012) Effects of Camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. J Anim Sci 90(11):4042–4054. https://doi.org/10.2527/jas.2011-4664

    Article  CAS  Google Scholar 

  • Chaturvedi S, Bhattacharya A, Khare SK, Kaushik G (2017) Camelina sativa: an emerging biofuel crop. Handb Environ Mater Manag:1–38. https://doi.org/10.1007/978-3-319-58538-3_110-1

  • Ciurescu G, Ropota M, Toncea I, Habeanu M (2016) Camelina (Camelina sativa L. Crantz variety) oil and seeds as n-3 fatty acids rich products in broiler diets and its effects on performance, meat fatty acid composition, immune tissue weights, and plasma metabolic profile. J Agric Sci Technol:315–326

    Google Scholar 

  • Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2(4):310–325. https://doi.org/10.1039/b9ay00280d

    Article  CAS  Google Scholar 

  • Conners IL (1967) An annotated index of plant diseases in Canada and fungi recorded on plants in Alaska, Canada and Greenland. Can Dep Agric Res Branch Ottawa Publ:1251.38

    Google Scholar 

  • Crowley JG (1999) Evaluation of Camelina sativa as an alternative oilseed crop. Teagasc, Dublin

    Google Scholar 

  • Crowley JG, Fröhlich A (1998) Factors affecting the composition and use of Camelina. Research Report 7, Project 4319, Teagasc, Dublin, Ireland

    Google Scholar 

  • Cuendet M, Oteham CP, Moon RC, Pezzuto JM (2006) Quinone reductase induction as a biomarker for cancer chemoprevention. J Nat Prod 69(3):460–463

    Article  CAS  Google Scholar 

  • Czarnik M, Jarecki W, Bobrecka-Jamro D (2018) Reaction of winter varieties of false flax (Camelina sativa (L.) Crantz) to the varied sowing time. J Cent Eur Agric 19(3):571–586

    Article  Google Scholar 

  • Dangol N, Shrestha DS, Duffield JA (2015) Am Soc Agric Biol Eng 58(2):465–475. https://doi.org/10.13031/trans.58.10771

  • Das N, Berhow MA, Angelino D, Jeffery EH (2014) Camelina sativa defatted seed meal contains both alkyl sulfinyl glucosinolates and quercetin that synergize bioactivity. J Agric Food Chem 62(33):8385–8391

    Article  CAS  Google Scholar 

  • Dimmock J, Edwards-Jones G (2006) Crop protection in alternative crops. Outlook Pest Manag 17(1):24–27

    Article  Google Scholar 

  • Drenth AC, Olsen DB, Denef K (2015) Fuel property quantification of triglyceride blends with an emphasis on industrial oilseeds Camelina, Carinata, and pennycress. Fuel 153:19–30. https://doi.org/10.1016/j.fuel.2015.02.090

    Article  CAS  Google Scholar 

  • Ehrensing DT, Guy SO (2008) Camelina. EM 8953-E. Oregon State University Extension Service, Corvallis

    Google Scholar 

  • Eidhin DN, Burke J, O’Beirne D (2003) Oxidative stability of ω3-rich Camelina oil and Camelina oil-based spread compared with plant and fish oils and sunflower spread. J Food Sci 68(1):345–353

    Article  CAS  Google Scholar 

  • EISA (2007) Energy Independence and Security Act of 2007 (Public Law 110–140). U.S. Government Printing Office, Washington, DC. Retrieved from www.gpo.gov/fdsys/pkg/PLAW110publ140/pdf/PLAW-110publ140.pdf

  • El Sabagh A, Hossain A, Barutcular C, Gormus O, Ahmad Z, Hussain S, Akdeniz A (2019) Effects of drought stress on the quality of major oilseed crops: implication and possible mitigation strategies – a review. Appl Ecol Environ Res 17:4019–4043

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1989) Quantal response of seed germination in seven genera of Cruciferae to white light of varying photon flux density and photoperiod. Ann Bot 63(1):145–158

    Article  Google Scholar 

  • Enjalbert N, Johnson J (2011) Guide for producing dryland Camelina in eastern Colorado. Crop production fact sheet no. 0709. Colorado State University, Fort Collins

    Google Scholar 

  • Fahey JW, Wade KL, Stephenson KK, Chou FE (2003) Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J Chromatogr 996(1-2):85–93. https://doi.org/10.1016/S0021-9673(03)00607-1

    Article  CAS  Google Scholar 

  • Faisal F, Iqbal MA, Aydemir SK, Hamid A, Rahim N, El Sabagh A, Khaliq A, Siddiqui MH (2020) Exogenously foliage applied micronutrients efficacious impact on achene yield of sunflower under temperate conditions. Pak J Bot 52(4):1215–1221

    Article  CAS  Google Scholar 

  • Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M (2022) Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci 13:927535. https://doi.org/10.3389/fpls.2022.927535

    Article  Google Scholar 

  • Fernández-Cuesta Á, Velasco L, Ruiz-Méndez MV (2014) Novel safflower oil with high γ-tocopherol content has a high oxidative stability. Eur J Lipid Sci Technol 116:832–836

    Article  Google Scholar 

  • Frame DD, Palmer M, Peterson B (2007) Use of Camelina sativa in the diets of young Turkeys. J Appl Poult Res. https://doi.org/10.1093/japr/16.3.381

  • Francis A, Warwick SI (2009) The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Can J Plant Sci 89(4):791–810. https://doi.org/10.4141/CJPS08185

    Article  Google Scholar 

  • Fröhlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crop Prod 21(1):25–31. https://doi.org/10.1016/j.indcrop.2003.12.004

    Article  CAS  Google Scholar 

  • Froment M, Mastebroek D, Van Gorp K (2006) A growers manual for Calendula officinalis L. http://www.defra.gov.uk/farm/crops/industrial/research/reports/Calendula%.20Manual.pdf

  • Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet EP, Navas ML, Wery J, Louarn G, Malezieux E, Pelzer E, Prudent M, Ozier-Lafontaine H (2015) Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron Sustain Dev 35:607–623. https://doi.org/10.1007/s13593-014-0272-z

    Article  Google Scholar 

  • Galasso I, Manca A, Braglia L, Martinelli T, Morello L, Breviario D (2011) h-TBP: An approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol Breed. https://doi.org/10.1007/s11032-010-9515-0

  • Gao L, Caldwell CD, Jaing Y (2018) Photosynthesis and growth of Camelina and canola in response to water deficit and applied nitrogen. Crop Sci 58:393–401. https://doi.org/10.2135/cropsci2017.07.0406

    Article  CAS  Google Scholar 

  • Gehringer A, Friedt W, Lühs W, Snowdon RJ (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49(12):1555–1563. https://doi.org/10.1139/G06-117

    Article  CAS  Google Scholar 

  • Gesch RW (2014) Influence of genotype and sowing date on Camelina growth and yield in the north central U.S. Ind Crop Prod 54:209–215. https://doi.org/10.1016/j.indcrop.2014.01.034

    Article  Google Scholar 

  • Gesch RW, Archer DW (2009) Camelina: A potential winter annual crop for the northern Corn Belt. (Abstract) (CD-ROM). ASA-CSSASSSA annual meet, Pittsburgh, PA. 1–5 November 2009. ASA, CSSA and SSSA, Madison

    Google Scholar 

  • Gesch RW, Cermak SC (2011) Sowing date and tillage effects on fall-seeded Camelina in the Northern Corn Belt. Agron J 103(4):980–987. https://doi.org/10.2134/agronj2010.0485

    Article  Google Scholar 

  • Gesch RW, Matthees HL, Alvarez AL, Gardner RD (2018) Winter Camelina: Crop growth, seed yield, and quality response to cultivar and seeding rate. Crop Sci 58(5):2089–2098

    Article  CAS  Google Scholar 

  • Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C (2010) Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53(7):558–567. https://doi.org/10.1139/G10-034

    Article  CAS  Google Scholar 

  • Glithero NJ, Ramsden SJ, Wilson P (2012) Farm systems assessment of bioenergy feedstock production: Integrating bioeconomic models and life cycle analysis approaches. Agric Syst 109:53–64. https://doi.org/10.1016/j.agsy.2012.02.005

    Article  CAS  Google Scholar 

  • Gogus U, Smith C (2010) n-3 Omega fatty acids: a review of current knowledge. Int J Food Sci Technol 45(3):417–436

    Article  CAS  Google Scholar 

  • Gómez-Monedero B, Bimbela F, Arauzo J, Faria J, Ruiz MP (2015) Pyrolysis of red eucalyptus, Camelina straw, and wheat straw in an ablative reactor. Energy Fuel. https://doi.org/10.1021/ef5026054

  • Goulson D (2003) Conserving wild bees for crop pollination. Food Agric Environ 1:142–144

    Google Scholar 

  • Government of Canada (2011) Plants of Canada database. [Online] Available: https://glfc.cfsnet.nfis.org/mapserver/cfia_taxa/taxa.php?gid=1004663. 9 Mar 2011

  • Gugel RK, Falk KC (2006) Agronomic and seed quality evaluation of Camelina sativa in Western Canada. Can J Plant Sci 86(4):1047–1058. https://doi.org/10.4141/P04-081

    Article  Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653. https://doi.org/10.1016/j.energy.2008.06.002

    Article  CAS  Google Scholar 

  • Gupta SK (ed) (2015) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic

    Google Scholar 

  • Guy SO, Wysocki DJ, Schillinger WF, Chastain TG (2014) Camelina: adaptation and performance of genotypes. Field Crop Res 155:224–232

    Article  Google Scholar 

  • Hack H, Bleiholder H, Burh L, Meier U, Schnock-Fricke E, Weber E, Witzenberger A (1992) Einheitliche Codierung der phänologischen Entwicklungsstadien mono-und dikotyler Pflanzen–Erweiterte BBCH-Skala Allgemein. Nachrichtenblatt desDeutschen Pflanzenschutzdientes

    Google Scholar 

  • Harveson RM, Santra DK, Putnam ML, Curtis M, Pavlista AD (2011) A new report for downy mildew [(Hyaloperonospora camelinae Gaum.) Goker, Voglmayr, Riethm., M. Weiss & Oberw. 2003] of camelina [Camelina sativa (L.) Crantz] in the High Plains of the United States. Plant Health Progr. https://doi.org/10.1094/PHP-2011-1014-01-BR

  • Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weath Cli Ext 10:4–10

    Article  Google Scholar 

  • Henderson AE, Hallett RH, Soroka JJ (2004) Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J Insect Behav 17, 17(1):–39. https://doi.org/10.1023/B:JOIR.0000025130.20327.1a

  • Hess BW, Chen C, Foulke T, Jacobs J, Johnson D (2011) Evaluation of Camelina sativa as an alternative seed crop and feedstock for biofuel and developing replacement heifers. Project number SW07-049. Sustainable Agriculture Research & Education, University of Maryland

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:1206–11210

    Article  Google Scholar 

  • Hossain A, El Sabagh A, Barutcular C, Bhatt R, Çig F, Seydoşoglu S, Turan N, Konuskan O, Iqbal MA, Abdelhamid M, Soler CMT, Laing AM, Saneoka H (2020) Sustainable crop production to ensuring food security under climate change: a Mediterranean perspective. Aust J Crop Sci 14(3):439–446

    Article  Google Scholar 

  • Hurtaud C, Peyraud JL (2007) Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability. J Dairy Sci 90(11):5134–5145

    Article  CAS  Google Scholar 

  • Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10(1):1–15. https://doi.org/10.1186/1471-2229-10-233

    Article  CAS  Google Scholar 

  • Ibrahim FM, El Habbasha SF (2015) Chemical composition, medicinal impacts and cultivation of Camelina (Camelina sativa): review. Int J Pharm Tech Res 8:114–122

    CAS  Google Scholar 

  • Imbrea F, Jurcoane S, Hǎlmǎjan HV, Duda M, Botoş L (2011) Camelina sativa: a new source of vegetal oils. Roum Biotechnol Lett 16(3):6263–6270

    CAS  Google Scholar 

  • IPPC (2011) Direct solar energy. Tech Rep. http://www.ipcc-wg3.de/report/IPCC_SRREN_Ch03.pdf

  • Iqbal MA, Hamid A, Hussain I, Rizwan M, Imran M, Sheikh UAA, Ishaq S (2020) Cactus pear: a weed of drylands for supplementing food security under changing climate. Planta Daninha 38:e020191761

    Article  Google Scholar 

  • Iqbal MA, Imtiaz H, Abdul H, Bilal A, Saira I, Ayman S, Celaleddin B, Rana DK, Imran M (2021a) Soybean herbage yield, nutritional value and profitability under integrated manures management. An Acad Bras Cienc 93(1):e20181384

    Article  CAS  Google Scholar 

  • Iqbal MA, Iqbal A, Ahmad Z, Raza A, Rahim J, Imran M, Sheikh UAA, Maqsood Q, Soufan W, Sahloul NMA, Sorour S, El Sabagh A (2021b) Cowpea [Vigna unguiculata (L.) Walp] herbage yield and nutritional quality in cowpea-sorghum mixed strip intercropping systems. Revista Mexicana De Ciencias Pecurias 12(2):402–418

    Article  Google Scholar 

  • Iskandarov U, Kim HJ, Cahoon EB (2014) Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials. In: McCann M, Buckeridge M, Carpita N (eds) Plants and bioenergy. Advances in plant biology, vol 4. Springer, New York

    Google Scholar 

  • Jankowski KJ, Sokolski M, Kordan B (2019) Camelina: yield and quality response to nitrogen and sulfur fertilization in Poland. Ind Crop Prod 141:111776

    Article  CAS  Google Scholar 

  • Jejelowo OA, Conn KL, Tewari JP (1991) Relationship between conidial concentration, germling growth, and phytoalexin production by Camelina sativa leaves inoculated with Alternaria brassicae. Mycol Res 95(8):928–934

    Article  CAS  Google Scholar 

  • Jewett FG (2015) Camelina sativa: for biofuels and bioproducts. In: Cruz VMV, Dierig DA (eds) Industrial crops. Springer, pp 157–170

    Chapter  Google Scholar 

  • Jha P, Stougaard RN (2013) Camelina (Camelina sativa) tolerance to selected preemergence herbicides. Weed Technol 27(4):712–717. https://doi.org/10.1614/wt-d-13-00061.1

    Article  CAS  Google Scholar 

  • Jiang Z, Ahn DU, Ladner L, Sim JS (1992) Influence of feeding full fat flax and sunflower seeds on internal and sensory qualities of eggs. Poult Sci

    Book  Google Scholar 

  • Jiang Y, Caldwell CD, Falk KC, Lada RR, Macdonald D (2013) Camelina yield and quality response to combined nitrogen and sulfur. Agronomy J105(6):1847–1852. https://doi.org/10.2134/agronj2013.0240

    Article  CAS  Google Scholar 

  • Johnson J, Enjalbert N, Schneekloth J, Helm A, Malhotra R (2009) Development of oilseed crops for biodiesel production under Colorado limited irrigation conditions. Final report no. 211. Colorado Water Institute

    Google Scholar 

  • Johnston AM, Tanaka DL, Miller PR, Brandt SA, Nielsen DC, Lafond GP, Riveland NR (2002) Oilseed crops for semiarid cropping systems in the northern Great Plains. Agron J 94(2):231–240. https://doi.org/10.2134/agronj2002.0231

    Article  Google Scholar 

  • Julié-Galau S, Bellec Y, Faure JD, Tepfer M (2014) Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM camelina. Transgenic Res 23(1):67–74. https://doi.org/10.1007/s11248-013-9722-7

    Article  CAS  Google Scholar 

  • Kakani R, Fowler J, Haq AU, Murphy EJ, Rosenberger TA, Berhow M, Bailey CRA (2012) Camelina meal increases egg n-3 fatty acid content without altering quality or production in laying hens. Lipids 47(5):519–526. https://doi.org/10.1007/s11745-012-3656-3

    Article  CAS  Google Scholar 

  • Kalita DJ, Tarnavchyk I, Sibi M, Moser BR, Webster DC, Chisholm BJ (2018) Biobased poly (vinyl ether)s derived from soybean oil, linseed oil, and Camelina oil: synthesis, characterization, and properties of crosslinked networks and surface coatings. Prog Org Coat 125:453–462. https://doi.org/10.1016/j.porgcoat.2018.09.033

    Article  CAS  Google Scholar 

  • Karolewski Z (1999) Characteristics of Leptosphaeria maculans isolates occurring in Wielkopolska region in 1991–1996. Phytopathol Pol:103–111

    Google Scholar 

  • Karvonen HM, Aro A, Tapola NS, Salminen I, Uusitupa MI, Sarkkinen ES (2002) Effect of [alpha]-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism 51(10):1253–1260

    Article  CAS  Google Scholar 

  • Kasetaite S, Ostrauskaite J, Grazuleviciene V, Svediene J, Bridziuviene D (2014) Camelina oil- and linseed oil-based polymers with bisphosphonate crosslinks. J Appl Polym Sci 131(17):10.1002/app.40683

    Article  Google Scholar 

  • Katar D, Arslan Y, Subasi I (2012) Ankara ekolojik koşullarında farklı ekim zamanlarının ketencik (Camelina sativa (L.) Crantz) bitkisinin yağ oranı ve bileşimi üzerine olan etkisinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi 9(3):84–90

    Google Scholar 

  • Keshavarz-Afshar R, Chen C (2015) Intensification of dryland cropping systems for bio-feedstock production: energy analysis of Camelina. Bioeng Res 8:1877–1884. https://doi.org/10.1007/s12155-015-9644-8

    Article  CAS  Google Scholar 

  • Khadhair AH, Tewari JP, Howard RJ, Paul VH (2001) Detection of aster yellows phytoplasma in false flax based on PCR and RFLP. Microbiol Res 156(2):179–184. https://doi.org/10.1078/0944-5013-00100

    Article  CAS  Google Scholar 

  • Kim N, Li Y, Sun XS (2015) Epoxidation of Camelina sativa oil and peel adhesion properties. Ind Crop Prod 64:1–8. https://doi.org/10.1016/j.indcrop.2014.10.025

    Article  CAS  Google Scholar 

  • Kirkhus B, Lundon AR, Haugen J-E, Vogt G, Borge GIA, Henriksen BI (2013) Effects of environmental factors on edible oil quality of organically grown Camelina sativa. J Agric Food Chem 61(13):3179–3185

    Article  CAS  Google Scholar 

  • Klinkenberg B (2008) E-Flora BC: electronic atlas of the plants of British Columbia [www.eflora.bc.ca]. Lab for Advanced Spatial Analysis, Department of Geography, University of British Columbia

  • Knörzer KH (1978) Entwicklung und Ausbreitung des Leindotters (Camelina sativa). Ber Deutsch Bot Ges, Bd

    Google Scholar 

  • Kollmann J, Bassin S (2001) Effects of management on seed predation in wildflower strips in northern Switzerland. Agric Ecosyst Environ 83(3):285–296. https://doi.org/10.1016/S0167-8809(00)00202-4

    Article  Google Scholar 

  • Larsson M (2013) Cultivation and processing of Linum usitatissimum and Camelina sativa in southern Scandinavia during the Roman Iron Age. Veg Hist Archaeobotany 22:509–520

    Article  Google Scholar 

  • Leclère M, Jeuffroy MH, Butier A, Chatain C, Loyce C (2019) Controlling weeds in Camelina with innovative herbicide-free crop management routes across various environments. Ind Crop Prod 140:111605. https://doi.org/10.1016/j.indcrop.2019.111605

    Article  CAS  Google Scholar 

  • Lenssen AW, Iversen WM, Sainju UM, Caesar-TonThat TC, Blodgett SL, Allen BL, Evans RG (2012) Yield, pests, and water use of durum and selected crucifer oilseeds in two-year rotations. Agronomy J104(5):1295–1304. https://doi.org/10.2134/agronj2012.0057

    Article  Google Scholar 

  • Li X, Mupondwa E (2014) Life cycle assessment of Camelina oil derived biodiesel and jet fuel in the Canadian Prairies. Sci Total Environ 481:17–26

    Article  CAS  Google Scholar 

  • Li H, Barbetti MJ, Sivasithamparam K (2005) Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crop Res 91(2-3):185–198. https://doi.org/10.1016/j.fcr.2004.06.006

    Article  Google Scholar 

  • Li Z, Chakraborty S, Xu G (2016) X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa. Acta Crystallographica Sect F: Str Biol Comm 72(10):782–787

    Article  CAS  Google Scholar 

  • Li N, Qi G, Sun XS, Xu F, Wang D (2015) Adhesion properties of Camelina protein fractions isolated with different methods. Ind Crop Prod 69:263–272. https://doi.org/10.1016/j.indcrop.2015.02.033

    Article  CAS  Google Scholar 

  • Liu H, Bean S, Sun XS (2018) Camelina protein adhesives enhanced by polyelectrolyte interaction for plywood applications. Ind Crop Prod 124:343–352. https://doi.org/10.1016/j.indcrop.2018.07.068

    Article  CAS  Google Scholar 

  • Liu K, Zhang C, Guan B, Yang R, Liu K, Wang Z, Li X, Xue K, Yin L, Wang X (2021) The effect of different sowing dates on dry matter and nitrogen dynamics for winter wheat: an experimental simulation study. Peer J 9:e11700. https://doi.org/10.7717/peerj.11700. PMID: 35070513; PMCID: PMC8759384

  • Ma Y, Gentry T, Hu P, Pierson E, Gu M, Yin S (2015) Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of Fusarium wilt on chili pepper. Appl Soil Ecol 90:41–48. https://doi.org/10.1016/j.apsoil.2015.01.016

    Article  CAS  Google Scholar 

  • Malhi SS, Johnson EN, Hall LM, May WE, Phelps S, Nybo B (2014) Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can J Soil Sci 94(1):35–47. https://doi.org/10.4141/CJSS2012-086

    Article  CAS  Google Scholar 

  • Martinelli T, Galasso I (2011) Phenological growth stages of Camelina sativa according to the extended BBCH scale. Ann Appl Biol 158(1):87–94. https://doi.org/10.1111/j.1744-7348.2010.00444.x

    Article  Google Scholar 

  • Matthäus B, Zubr J (2000a) Bioactive compounds in oil-cakes of Camelina sativa (L.) Crantz. Agro Food Industry Hi Tech, September/October

    Google Scholar 

  • Matthäus B, Zubr J (2000b) Variability of specific components in Camelina sativa oilseed cakes. Ind Crop Prod. https://doi.org/10.1016/S0926-6690(99)00040-0

  • Mavridis A, Paul V, Rudolph K (2002) Bacterial blight of Camelina sativa caused by Pseudomonas syringae pv. camelinae. Beitr. Zuchtungsf. Bundesanst. Zuchtungsf. Kulturpfl

    Google Scholar 

  • McVay KA, Khan QA (2011) Camelina yield response to different plant populations under dryland conditions. Agronomy J103(4):1265–1269. https://doi.org/10.2134/agronj2011.0057

    Article  Google Scholar 

  • Mcvay KA, Lamb PF (2008) Camelina Production in Montana (Report). Bull. MT200701AG

    Google Scholar 

  • Meadus WJ, Duff P, McDonald T, Caine WR (2014) Pigs fed Camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase. J Anim Sci Biotechnol. https://doi.org/10.1186/2049-1891-5-1

  • Meyer JC, Michelutti N, Paterson AM, Cumming BF, Keller WB, Smol JP (2019) The browning and re-browning of lakes: Divergent lake-water organic carbon trends linked to acid deposition and climate change. Sci Rep 9(1):1

    Google Scholar 

  • Milbau A, Stout JC (2008) Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv Biol 22(2):308–317. https://doi.org/10.1111/j.1523-1739.2007.00877.x

    Article  Google Scholar 

  • Mohammed YA, Chen C, Lamb P, Afshar RK (2017) Agronomic evaluation of Camelina (Camelina sativa L. Crantz) cultivars for biodiesel feedstock. Bioeng Res 10:792–799. https://doi.org/10.1007/s12155-017-9840-9

    Article  CAS  Google Scholar 

  • Mohammad BT, Al-Shannag M, Alnaief M, Singh L, Singsaas E, Alkasrawi M (2018) Production of multiple biofuels from whole Camelina material: a renewable energy crop. BioResources 13(3):4870–4883

    CAS  Google Scholar 

  • Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuel’s feedstock: golden opportunity or false hope. Lipid Tech 22(12):270–273

    Article  CAS  Google Scholar 

  • Moser BR, Vaughn SF (2010) Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour Technol 101(2):646–653. https://doi.org/10.1016/j.biortech.2009.08.054

    Article  CAS  Google Scholar 

  • Mulligan GA (2002) Weedy introduced mustards (Brassicaceae) of Canada. Can Field-Naturalist 116(4):623–631

    Google Scholar 

  • NASS (2015) National agricultural statistical services. USDA. http://www.nass.usda.gov

    Google Scholar 

  • Neupane D, Solomon JK, Mclennon E, Davison J, Lawry T (2019) Sowing date and sowing method influence on Camelina cultivars grain yield, oil concentration, and biodiesel production. Food Energy Secur 8(3):e00166

    Article  Google Scholar 

  • Nosal H, Nowicki J, Warzała M, Nowakowska-Bogdan E, Zarębska M (2015) Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Prog Org Coat 86:59–70. https://doi.org/10.1016/j.porgcoat.2015.04.009

    Article  CAS  Google Scholar 

  • Obeng E, Obour AK, Nelson NO, Moreno JA, Ciampitti IA, Wang D, Durrett TP (2019) Seed yield and oil quality as affected by Camelina cultivar and planting date. J Crop Improv. https://doi.org/10.1080/15427528.2019.1566186

  • Obour AK, Krall JM, Nachtman JJ (2012) Influence of nitrogen and phosphorus fertilization on dryland Camelina sativa seed yield and oil content. Agricultural Experiment Station 2012 Field Days Bulletin. University of Wyoming, Laramie

    Google Scholar 

  • Obour AK, Sintim HY, Obeng E, Jeliazkov VD (2015) Oilseed Camelina (Camelina Sativa L. Crantz): production systems, prospects and challenges in the USA Great Plains. Adv Plants Agric Res 2:1–9

    Google Scholar 

  • Obour AK, Obeng E, Mohammed YA, Ciampitti IA, Durrett TP, Aznar-Moreno JA, Chen C (2017) Camelina seed yield and fatty acids as influenced by genotype and environment. Agron J 109(3):947–956

    Article  CAS  Google Scholar 

  • Obour AK, Chen C, Sintim HY, McVay K, Lamb P, Obeng E, Mohammed YA, Khan Q, Afshar RK, Zheljazkov VD (2018) Camelina sativa as a fallow replacement crop in wheat-based crop production systems in the US Great Plains. Ind Crops Prod 111:22–29

    Article  Google Scholar 

  • Palagesiu I (2000) Contributions to the knowledge of the entomofauna of some prospective oil plants in Romania. Lucrai Stiintifice-Agricultura, Universitatea de Stiinte Agricole si Medicina Veterinara a Banatului Timisoara 32(3):983–992

    Google Scholar 

  • Pavlista AD, Isbell TA, Baltensperger DD, Hergert GW (2011) Planting date and development of spring-seeded irrigated canola, brown mustard and Camelina. Ind Crop Prod 33(2):451–456. https://doi.org/10.1016/j.indcrop.2010.10.029

    Article  CAS  Google Scholar 

  • Pedras MSC, Montaut S, Zaharia IL, Gai Y, Ward DE (2003) Transformation of the host-selective toxin destruxin B by wild crucifers: Probing a detoxification pathway. Phytochemistry 64(5):957–963. https://doi.org/10.1016/S0031-9422(03)00444-8

    Article  CAS  Google Scholar 

  • Pekel AY, Patterson PH, Hulet RM, Acar N, Cravener TL, Dowler DB, Hunter JM (2009) Dietary Camelina meal versus flaxseed with and without supplemental copper for broiler chickens: live performance and processing yield. Poult Sci 88(11):2392–2398. https://doi.org/10.3382/ps.2009-00051

    Article  CAS  Google Scholar 

  • Pekel AY, Kim JI, Chapple C, Adeola O (2015) Nutritional characteristics of Camelina meal for 3-week-old broiler chickens. Poult Sci 94(3):371–378. https://doi.org/10.3382/ps/peu066

    Article  CAS  Google Scholar 

  • Pilgeram AL (2007) Camelina sativa, a Montana omega-3 and fuel crop. Terpinc P, Abramovič H (ed). A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chem 121(2):366–371

    Google Scholar 

  • Plessers AG, McGregor WG, Carson RB, Nakoneshny W (1962) Species trials with oilseed plants. II. Camelina. Can J Plant Sci 42(3):452–445

    Article  Google Scholar 

  • Ponnampalam EN, Kerr MG, Butler KL, Cottrell JJ, Dunshea FR, Jacobs JL (2019) Filling the out of season gaps for lamb and hogget production: diet and genetic influence on carcass yield, carcass composition and retail value of meat. Meat Sci 148:156–163. https://doi.org/10.1016/j.meatsci.2018.08.027

    Article  CAS  Google Scholar 

  • Putnam DH, Budin JT, Field LA, Breene WM (1993) Camelina: a promising low-input oilseed. New Crop. Wiley, New York

    Google Scholar 

  • Putnam ML, Serdani M, Ehrensing D, Curtis M (2009) Camelina infected by Downy Mildew (Hyaloperonospora camelinae) in the Western United States: a first report. Plant Heal Prog 10(1):40. https://doi.org/10.1094/php-2009-0910-01-br

    Article  Google Scholar 

  • Radzi A, Droege P (2014) Latest perspectives on global renewable energy policies. Curr Sustain Renew Energy Rep 1:85–93. https://doi.org/10.1007/s40518-014-0014-5

    Article  Google Scholar 

  • Rahman MJ, de Camargo AC, Shahidi F (2018) Phenolic profiles and antioxidant activity of defatted Camelina and sophia seeds. Food Chem 240:917–925. https://doi.org/10.1016/j.foodchem.2017.07.098

    Article  CAS  Google Scholar 

  • Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W (2022) Melatonin-mediated temperature stress tolerance in plants. GM Crops Food 13(1):196–217

    Article  Google Scholar 

  • Razeq FM, Kosma DK, Rowland O, Molina I (2014) Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188–196

    Article  CAS  Google Scholar 

  • Reddy N, Jin E, Chen L, Jiang X, Yang Y (2012) Extraction, characterization of components, and potential thermoplastic applications of Camelina meal grafted with vinyl monomers. J Agric Food Chem 60(19):4872–4879

    Article  CAS  Google Scholar 

  • Righini D, Zanetti F, Monti A (2016) The bio-based economy can serve as the springboard for Camelina and crambe to quit the limbo. OCL 23(5):D504

    Article  Google Scholar 

  • Righini D, Zanetti F, Martínez-Force E, Mandrioli M, Toschi TG, Monti A (2019) Shifting sowing of Camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Ind Crop Prod 137:66–73

    Article  CAS  Google Scholar 

  • Robinson R (1987) Camelina: a useful research crop and a potential oilseed crop

    Google Scholar 

  • Rode J (2002) Study of autochthon Camelina sativa (L.) Crantz in Slovenia. Int J Geogr Inf Syst 9(4):313–318. https://doi.org/10.1300/J044v09n04_08

    Article  CAS  Google Scholar 

  • Sabagh AE, Hossain A, Islam MS, Iqbal MA, Raza A, Karademir Ç, Karademir E, Rehman A, Rahman MA, Singhal RK, Llanes A (2020) Elevated CO2 concentration improves heat-tolerant ability in crops. In: Fahad S, Saud S, Chen Y, Wu C, Wang D (eds) Abiotic stress in plants. IntechOpen. https://doi.org/10.5772/intechopen.94128

    Chapter  Google Scholar 

  • Sainger M, Jaiwal A, Sainger PA, Chaudhary D, Jaiwal R, Jaiwal PK (2017) Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products. Renew Sustain Energy Rev 68:623–637. https://doi.org/10.1016/j.rser.2016.10.023

    Article  CAS  Google Scholar 

  • Salisbury PA (1987) Blackleg resistance in weedy crucifers. Eucarpia cruciferae. Newsletter 12:90

    Google Scholar 

  • Salminen H, Estévez M, Kivikari R, Heinonen M (2006) Inhibition of protein and lipid oxidation by rapeseed, Camelina and soy meal in cooked pork meat patties. Eur Food Res Technol 223(4):461. https://doi.org/10.1007/s00217-005-0225-5

    Article  CAS  Google Scholar 

  • Sampath A (2009) Chemical characterization of Camelina seed oil. Rutgers University-Graduate School, New Brunswick

    Google Scholar 

  • Sarkodie SA, Ntiamoah EB, Dongmei L (2019) Panel heterogeneous distribution analysis of trade and modernized agriculture on CO2 emissions: the role of renewable and fossil fuel energy consumption. Nat Resour Forum 43(3):135–153. https://doi.org/10.1111/1477-8947.12183

    Article  Google Scholar 

  • Sawyer K (2008) Is there room for Camelina. Biodiesel Mag 5(7):83–87

    Google Scholar 

  • Schillinger WF (2019) Camelina: long-term cropping systems research in a dry Mediterranean climate. Field Crop Res 235:87–94

    Article  Google Scholar 

  • Schillinger WF, Wysocki DJ, Chastain TG, Guy SO, Karow RS (2012) Camelina: planting date and method effects on stand establishment and seed yield. Field Crop Res 130:138–144

    Article  Google Scholar 

  • Schulte LR, Ballard T, Samarakoon T, Yao L, Vadlani P, Staggenborg S, Rezac M (2013) Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Ind Crop Prod 51:212–219. https://doi.org/10.1016/j.indcrop.2013.08.075

    Article  CAS  Google Scholar 

  • Schultze-Motel W (1986) Camelina. In: Hegi G (ed) Illustrierte flora von Mittel-europa, vol 4, 3rd edn. Verlag Paul Parey, Berlin/Hamburg, pp 340–345

    Google Scholar 

  • Schwartz H, Ollilainen V, Piironen V, Lampi AM (2008) Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J Food Compos Anal 21(2):152–161. https://doi.org/10.1016/j.jfca.2007.07.012

    Article  CAS  Google Scholar 

  • Science Advice for Policy by European Academies (2020) A sustainable food system for the European Union (PDF). SAPEA, Berlin, p 39. https://doi.org/10.26356/sustainablefood. ISBN:978-3-9820301-7-3. Archived from the original (PDF) on 18 April 2020. Retrieved 14 April 2020

    Book  Google Scholar 

  • Seehuber R (1984) Genotypic variation for yield- and quality-traits in poppy and false flax. Fette-Seifen-Anstrichmittel 86(5):177–180

    Article  CAS  Google Scholar 

  • Seehuber R, Vollmann J, Dambroth M, Anwendung D (1987) Single-seed-descent Methode bei Leindotter (Camelina sativa (L.) Crantz) zur Erhöhung des Ertragsniveaus. Landbauforsch. Völken- rode

    Google Scholar 

  • Séguin-Swartz G, Nettleton JA, Sauder C, Warwick SI, Gugel RK (2013) Hybridization between Camelina sativa (L.) Crantz (false flax) and North American Camelina species. Plant Breed 132:390–396

    Article  Google Scholar 

  • Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, Nayyar H (2018) Drought or/and heatstress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9

    Google Scholar 

  • Shukla VKS, Dutta PC, Artz WE (2002) Camelina oil and its unusual cholesterol content. JAOCS 79(10):965–969. https://doi.org/10.1007/s11746-002-0588-1

    Article  CAS  Google Scholar 

  • Siddiqui MH, Iqbal MA, Naeem W, Hussain I, Khaliq A (2019) Bio-economic viability of rainfed wheat (Triticum aestivum L.) cultivars under integrated fertilization regimes in Pakistan. Custos e Agronegocio 15(3):81–96

    Google Scholar 

  • Sindelar AJ, Schmer MR, Gesch RW, Forcella F, Eberle CA, Thom MD, Archer DW (2017) Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations. GCB Bioenergy 9(3):508–524. https://doi.org/10.1111/gcbb.12297

    Article  CAS  Google Scholar 

  • Singh BK, Bala M, Rai PK (2014) Fatty acid composition and seed meal characteristics of brassica and allied genera. Natl Acad Sci Lett 37(3):219–226. https://doi.org/10.1007/s40009-014-0231-x

    Article  CAS  Google Scholar 

  • Sintim HY, Zheljazkov VD, Obour AK, Garcia-y-Garcia A, Foulke TK (2014) Camelina as a replacement for fallow in wheat-fallow rotation. ASA-CSSA-SSSA International Annual Meeting, Poster No: 323, Long Beach

    Google Scholar 

  • Sintim HY, Zheljazkov VD, Obour AK, Garcia-y-Garcia A, Foulke TK (2016a) Evaluating agronomic responses of Camelina to seeding date under rain-fed conditions. Agron J 108:349–357. https://doi.org/10.2134/agronj2015.0153

    Article  CAS  Google Scholar 

  • Sintim HY, Zheljazkov VD, Obour AK, Garcia-y-Garcia A (2016b) Managing harvest time to control pod shattering in oilseed camelina. Agron J 108(2):656–661. https://doi.org/10.2134/agronj2015.0300

  • Sobiech Ł, Grzanka M, Kurasiak-Popowska D, Radzikowska D (2020) Phytotoxic effect of herbicides on various camelina [Camelina sativa (L.) Crantz] genotypes and plant chlorophyll fluorescence. Agriculture 10(5):185

    Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792

    Google Scholar 

  • Soroka J, Olivier C, Grenkow L, Séguin-Swartz G (2015) Interactions between Camelina sativa (Brassicaceae) and insect pests of canola. Cana Entomol 147(2):193–214

    Article  Google Scholar 

  • Špak J, Kubelková D (2000) Serological variability among European isolates of radish mosaic virus. Plant Pathol 49(2):295–301. https://doi.org/10.1046/j.1365-3059.2000.00438.x

    Article  Google Scholar 

  • Struik PC, Kuyper TW (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37:39. https://doi.org/10.1007/s13593-017-0445-7

    Article  Google Scholar 

  • Szterk A, Roszko M, Sosińska E, Derewiaka D, Lewicki PP (2010) Chemical composition and oxidative stability of selected plant oils. JAOCS 87(6):637–645. https://doi.org/10.1007/s11746-009-1539-4

    Article  CAS  Google Scholar 

  • Tabără V, Pop G, Ladislau W, Tabără CG, Mateas I, Prodan M (2007) Plantele, surse deproducţie pentru biocombustibil. Buletinul AGIR nr. 3 (iulie-septembrie) in western Canada. Can J Plant Sci 3:17–20

    Google Scholar 

  • Tabatabaie SMH, Murthy GS (2017) Effect of geographical location and stochastic weather variation on life cycle assessment of biodiesel production from Camelina in the northwestern USA. Int J Life Cycle Assess 22(6):867–882

    Article  CAS  Google Scholar 

  • Tedin O (1922) Zur Blüten- und Befruchtungsbiologie der Leindotter (Camelina sativa). Bot Notiser 1922:177–189

    Google Scholar 

  • Terpinc P, Čeh B, Ulrih NP, Abramovič H (2012) Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod 39:210–217

    Article  CAS  Google Scholar 

  • Toncea I (2014) The seed yield potential of Camelia-first Romanian cultivar of Camelina (Camelina sativa L. Crantz). Roum Agric Res 31:17–23

    Google Scholar 

  • Tripathi V, Edrisi SA, Abhilash P (2016) Towards the coupling of phytoremediation with bioenergy production. Renew Sustain Energy Rev 57:1386–1389

    Article  CAS  Google Scholar 

  • Trumbo P, Schlicker S, Yates AA, Poos M (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102(11):1621–1630

    Article  Google Scholar 

  • Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L (2008) The effect of seeding rate, seeding date and seeder type on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can J Plant Sci. https://doi.org/10.4141/CJPS07148

  • USDA (2010) A USDA regional roadmap to meeting the biofuels goals of the renewable fuels standard by 2022. USDA Biofuels Strategic Production Report

    Google Scholar 

  • USDA (2011) www.ers.usda.gov/Briefing/SoybeansOilcrops/Canola.htm. Accessed Feb 2012

  • USDA-ARS (2011) National genetic resources program. Germplasm resources information network – (GRIN). National Germplasm Resources Laboratory, Beltsville

    Google Scholar 

  • USDA-NRCS (2010) Keys to soil taxonomy. Soil Survey Staff, Washington, DC

    Google Scholar 

  • USEPA (US Environmental Protection Agency) (2013) Regulation of fuels and fuel additives: identification of additional qualifying renewable fuel pathways under the renewable fuel standard program. Fed Regist 78(43):14190–14217

    Google Scholar 

  • Vollmann J, Eynck C (2015) Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnol J 10(4):525–535. https://doi.org/10.1002/biot.201400200

    Article  CAS  Google Scholar 

  • Vollmann J, Steinkellner S, Glauninger J (2001) Variation in resistance of Camelina (Camelina sativa [L.] Crtz.) to downy mildew (Peronospora camelinae Gäum.). J Phytopathol 149(3-4):129–133. https://doi.org/10.1046/j.1439-0434.2001.00599.x

    Article  Google Scholar 

  • Vollmann J, Damboeck A, Eckl A, Schrems H, Ruckenbauer P (1996) Improvement of Camelina sativa, an underexploited oilseed. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, pp 357–362

    Google Scholar 

  • Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crops and Prod 26(3):270–277

    Article  CAS  Google Scholar 

  • Vollmann K, Qurishi R, Hockemeyer J, Müller CE (2008) Synthesis and properties of a new water-soluble prodrug of the adenosine A2A receptor antagonist MSX-2. Molecule 13(2):348–359

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmed Z, Ahmad R, Shabbir RN (2017) Modulating the phenology and yield of Camelina sativa L. by varying sowing dates under water deficit stress conditions. Soil Environ 36:84–92

    Article  CAS  Google Scholar 

  • Western Australian Herbarium (2010) FloraBase – the Western Australian Flora. Department of Environment and Conservation. [Online] Available: http://florabase.dec.wa.gov.au/. 1 Sept 2010

    Google Scholar 

  • Westman AL, Dickson MH (1998) Disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris in Brassica nigra and other weedy crucifers. Crucif Newsl

    Google Scholar 

  • Westman AL, Kresovich S, Dickson MH (1999) Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106(3):253–259. https://doi.org/10.1023/A:1003544025146

    Article  Google Scholar 

  • Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sust Energ Rev 15(2):1098–1116. https://doi.org/10.1016/j.rser.2010.11.016

    Article  CAS  Google Scholar 

  • Yang J, Caldwell C, Corscadden K, He QS, Li J (2016) An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind Crop Prod 88:162–168. https://doi.org/10.1016/j.indcrop.2015.11.073

    Article  CAS  Google Scholar 

  • Yuan L, Li R (2020) Metabolic engineering a model oilseed Camelina sativa for the sustainable production of high-value designed oils. Front Plant Sci 11:11

    Article  Google Scholar 

  • Zaleckas E, Makarevicǐene V, Sendžikiene E (2012) Possibilities of using Camelina sativa oil for producing biodiesel fuel. Transport. https://doi.org/10.3846/16484142.2012.664827

  • Zanetti F, Eynck C, Christou M, Krzyżaniak M, Righini D, Alexopoulou E, Stolarski MJ, Van Loo EN, Puttick D, Monti A (2017) Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. Crantz) in multi-environment trials across Europe and Canada. Ind Crop Prod 107:602–608

    Article  Google Scholar 

  • Zhang CJ, Auer C (2019) Overwintering assessment of Camelina (Camelina sativa) cultivars and congeneric species in the northeastern US. Ind Crop Prod 139:111532

    Article  Google Scholar 

  • Zhao Y, Wei W, Davis RE, Lee IM (2010) Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In: Weintraub PG, Jones P (eds) Phytoplasma genomes, plant hosts and vectors. CABI, Cambridge, pp 64–92

    Google Scholar 

  • Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6(2):113–119

    Article  Google Scholar 

  • Zubr J (2003a) Dietary fatty acids and amino acids of Camelina sativa seed. J Food Qual 26(6):451–462. https://doi.org/10.1111/j.1745-4557.2003.tb00260.x

    Article  CAS  Google Scholar 

  • Zubr J (2003b) Qualitative variation of Camelina sativa seed from different locations. Ind Crop Prod 17(3):161–169. https://doi.org/10.1016/S0926-6690(02)00091-2

    Article  Google Scholar 

  • Zubr J (2009) Unique dietary oil from Camelina sativa Seed. Agro Food Ind Hi Tech 20(2):42–46

    CAS  Google Scholar 

Download references

Conflict of Interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M. et al. (2022). Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop. In: Ahmed, M. (eds) Global Agricultural Production: Resilience to Climate Change . Springer, Cham. https://doi.org/10.1007/978-3-031-14973-3_7

Download citation

Publish with us

Policies and ethics