Skip to main content
Log in

Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Guayule biosynthesizes and accumulates rubber particles predominantly in epithelial cells in the parenchyma tissue, and this biosynthesis and accumulation is accompanied by remodeling of the roles of epithelial cells.

The mechanism underlying the biosynthesis and accumulation of large quantities of rubber particles and resin in the parenchyma tissue of the stem bark of guayule (Parthenium argentatum Gray) remained unanswered up to now. Here, we focused on rubber particle biosynthesis and accumulation in guayule and performed histochemical analyses using a lipophilic fluorescent dye specific for lipids and spectral confocal laser scanning microscopy. Unmixing images were constructed based on specific spectra of cis-polyisoprene and resin and showed that guayule accumulates a large amount of resin in the resin canals in parenchyma tissue and in pith. Interestingly, the fluorescence signals of rubber were predominantly detected in a specific single layer of epithelial cells around the resin canals. These epithelial cells accumulated large rubber particles and essentially no resin. Immunoblotting and immunostaining of guayule homologue of small rubber particle proteins (GHS), which contributes to the biosynthesis of rubber in guayule, showed that GHS is one of several small rubber particle proteins and is localized around rubber particles in epithelial cells. De novo sequencing of the rubber particle proteins showed the presence of all known organelle proteins, suggesting that epithelial cells biosynthesize rubber particles, followed by remodeling of the cells for the accumulation of rubber particles with subsequent decomposition of the organelles. These results indicate that epithelial cells around resin canals are bifunctional cells dedicated to the biosynthesis and accumulation of rubber particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GHS:

Guayule homologue of SRPP

Guayule LRP:

Large rubber particle

RP:

Rubber particle

RPP:

Rubber particle protein

SCLSM:

Spectral confocal laser scanning microscopy

SRP:

Small rubber particle

(W)SRPP:

(Washed) Small rubber particle protein

References

  • Asawatreratanakul K, Zhang YW, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur J Biochem 270:4671–4680

    Article  CAS  PubMed  Google Scholar 

  • Backhaus RA, Walsh S (1983) The ontogeny of rubber formation in guayule, Parthenium argentatum Gray. Bot Gaz 144:391–400

    Article  Google Scholar 

  • Benedict CR, Goss R, Greer PJ, Foster MA (2011) The ultrastructure of low temperature stimulated rubber-producing cortical parenchyma in guayule. Ind Crop Prod 33:89–93

    Article  CAS  Google Scholar 

  • Berthelot K, Lecomte S, Estevez Y, Peruch F (2014a) Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): an overview on rubber particle proteins. Biochimie 106:1–9

    Article  CAS  PubMed  Google Scholar 

  • Berthelot K, Lecomte S, Estevez Y, Zhendre V, Henry S, Thévenot J, Dufourc EJ, Alves ID, Peruch F (2014b) Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Biochim Biophys Acta 1838:287–299

    Article  CAS  PubMed  Google Scholar 

  • Chrispeels MJ, Herman EM (2000) Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123:1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Cornish K, Backhaus RA (1990) Rubber transferase activity in rubber particles of guayule. Phytochemistry 29:3809–3813

    Article  CAS  Google Scholar 

  • Cornish K, Backhaus RA (2003) Induction of rubber transferase activity in guayule (Parthenium argentatum Gray) by low temperatures. Ind Crop Prod 17:83–92

    Article  CAS  Google Scholar 

  • Cornish K, Siler DJ (1995) Effect of different allylic diphosphates on the initiation of new rubber molecules and on cis-1,4-polyisoprene biosynthesis in guayule (Parthenium argentatum Gray). J Plant Physiol 147:301–305

    Article  CAS  Google Scholar 

  • Cornish K, Wood DF, Windle JJ (1999) Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta 210:85–96

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Kang G, Li Y, Nie Z, Duan C, Zeng R (2013) In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree). Plant Mol Biol 82:155–168

    Article  CAS  PubMed  Google Scholar 

  • Davis W (1997) The rubber industry´s biological nightmare. Fortune 136:86–95

    Google Scholar 

  • Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. J Biol Chem 264:18608–18617

    CAS  PubMed  Google Scholar 

  • Estilai A (1991) Biomass, rubber, and resin yield potentials of new guayule germplasm. Bioresour Technol 35:119–125

    Article  CAS  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–375

    Article  CAS  PubMed  Google Scholar 

  • Gilliland MG, van Staden J (1983) Detection of rubber in guayule (Parthenium argentatum Gray) at the ultrastructural level. Z Pflanzenphysiol 110:285–291

    Article  Google Scholar 

  • Gilliland MG, van Staden J, Bruton AG (1984) Studies on the translocation system of guayule (Parthenium argentatum Gray). Protoplasma 122:169–177

    Article  Google Scholar 

  • Hillebrand A, Post JJ, Wurbs D, Wahler D, Lenders M, Krzyzanek V, Prüfer D, Gronover CS (2012) Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum. PLoS One 7:e41874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KP (1994) Natural rubber as a green commodity—Part II. Rubber Dev 47:37–41

    Google Scholar 

  • Kim IJ, Ryu SB, Kwak YS, Kang H (2004) A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro. J Exp Bot 55:377–385

    Article  CAS  PubMed  Google Scholar 

  • Larson JM (2006) The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed. Cytometry A 69:825–834

    Article  PubMed  Google Scholar 

  • Lloyd FE (1911) Guayule (Parthenium Argentatum Gray): a rubber-plant of the Chihuhuan Desert. Carnegie Institution of Washington, Publication no 139

  • McMullen AI, McSweeney GP (1966) The biosynthesis of rubber: incorporation of isopentenyl pyrophosphate into purified rubber particles by a soluble latex serum enzyme. Biochem J 101:42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365

    Article  CAS  PubMed  Google Scholar 

  • Nakayama FS (2005) Guayule future development. Ind Crops Prod 22:3–13

    Article  Google Scholar 

  • Oh SK, Kang H, Shin DH, Yang J, Chow KS, Yeang HY, Wagner B, Breiteneder H, Han KH (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274:17132–17138

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA (1995) The major protein of guayule rubber particles is a cytochrome P450. Characterization based on cDNA cloning and spectroscopic analysis of the solubilized enzyme and its reaction products. J Biol Chem 270:8487–8494

    Article  CAS  PubMed  Google Scholar 

  • Ponciano G, McMahan CM, Xie W, Lazo GR, Coffelt TA, Collins-Silva J, Nural-Taban A, Gollery M, Shintani DK, Whalen MC (2012) Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue. Phytochemistry 79:57–66

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshan PM (2011) Biology of Hevea rubber. CABI Publishing, UK

    Book  Google Scholar 

  • Qu Y, Chakrabarty R, Tran HT, Kwon EJ, Kwon M, Nguyen TD, Ro DK (2015) A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J Biol Chem 290:1898–1914

    Article  CAS  PubMed  Google Scholar 

  • Ray DT, Coffelt TA, Dierig DA (2005) Breeding guayule for commercial production. Ind Crops Prod 22:15–25

    Article  Google Scholar 

  • Rojruthai P, Sakdapipanich JT, Takahashi S, Hyegin L, Noike M, Koyama T, Tanaka Y (2010) In vitro synthesis of high molecular weight rubber by Hevea small rubber particles. J Biosci Bioeng 109:107–114

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Coffelt TA (2009) Cornish K (2009) Improved methods for extraction and quantification of resin and rubber from guayule. Ind Crops Prod 30:9–16

    Article  CAS  Google Scholar 

  • Sando T, Takaoka C, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Fukusaki E, Kobayashi A (2008) Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. Biosci Biotechnol Biochem 72:2049–2060

    Article  CAS  PubMed  Google Scholar 

  • Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, Fukusaki E, Kobayashi A (2009) Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 230:215–225

    Article  CAS  PubMed  Google Scholar 

  • Schloman WW, Carlson DW, Hilton AS (1988) Guayule extractables: influence of extraction conditions on yield and composition. Biomass 17:239–249

    Article  CAS  Google Scholar 

  • Shearer AG, Hampton RY (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siler DJ, Cornish K, Hamilton RG (1996) Absence of cross-reactivity of IgE antibodies from subjects allergic to Hevea brasiliensis latex with a new source of natural rubber latex from guayule (Parthenium argentatum). J Allergy Clin Immunol 98:895–902

    Article  CAS  PubMed  Google Scholar 

  • Sookmark U, Pujade-Renaud V, Chrestin H, Lacote R, Naiyanetr C, Seguin M, Romruensukharom P, Narangajavana J (2002) Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome. Plant Cell Physiol 43:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Sundar D, Reddy AR (2001) Interactive influence of temperature and growth light intensity on rubber accumulation and rubber transferase activity in guayule (Parthenium argentatum Gray). J Plant Physiol 158:1291–1297

    Article  CAS  Google Scholar 

  • Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, An Z, Zhou B, Zhang B, Tan X, Yeang HY, Qin Y, Yang J, Lin Q, Mei H, Montoro P, Long X, Qi J, Hua Y, He Z, Sun M, Li W, Zeng X, Cheng H, Liu Y, Yang J, Tian W, Zhuang N, Zeng R, Li D, He P, Li Z, Zou Z, Li S, Li C, Wang J, Wei D, Lai CQ, Luo W, Yu J, Hu S, Huang H (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:16073

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Poirier Y (2007a) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529

    Article  PubMed  Google Scholar 

  • van Beilen JB, Poirier Y (2007b) Guayule and Russian dandelion as alternative sources of natural rubber. Crit Rev Biotechnol 27:217–231

    Article  PubMed  Google Scholar 

  • Venkatachalam P, Geetha N, Sangeetha P, Thulaseedharan A (2013) Natural rubber producing plants: an overview. Afr J Biotechnol 12:1297–1310

    Google Scholar 

  • Wagner S, Breiteneder H (2005) Hevea brasiliensis Latex allergens: current panel and clinical relevance. Int Arch Allergy Immunol 136:90–97

    Article  CAS  PubMed  Google Scholar 

  • Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Kazuhito Fujiyma (The International Center for Biotechnology, Osaka University, Japan) for help with nanoLC-MS/MS analysis and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Nakazawa.

Ethics declarations

Conflict of interest

There authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 679 kb)

Supplementary material 2 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajiura, H., Suzuki, N., Mouri, H. et al. Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray). Planta 247, 513–526 (2018). https://doi.org/10.1007/s00425-017-2804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2804-7

Keywords

Navigation