Skip to main content
Log in

Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene.

Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lpo) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lpo in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lpo only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lpo is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lpo to environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams DO, Yang SF (1979) Ethylene biosynthesis—identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Amodeo G, Fernández-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Arve LE, Torre S (2015) Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Funct Plant Biol 42:376–386

    Article  CAS  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruíz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant–Microb Interact 27:349–363

    Article  Google Scholar 

  • Boller T, Herner RC, Kende H (1979) Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-l carboxylic acid. Planta 145:293–303

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreno AM, Garcia-Mina JM, Aroca R (2014a) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Polanco M, Sanchez-Romera B, Aroca R (2014b) Mild salt stress conditions induce different responses in root hydraulic conductivity of Phaseolus vulgaris over-time. PLoS One 9:e90631

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo-Polanco M, Sánchez-Castro I, Cantos M, García JL, Azcón R, Ruiz-Lozano JM, Beuzón CR, Aroca R (2016) Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant Cell Environ 39:2498–2514

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Dodd IC, Davies WJ, Wilkinson S (2013) Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ 36:1850–1859

    Article  CAS  PubMed  Google Scholar 

  • Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan JP (2008) Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant 134:534–546

    Article  CAS  PubMed  Google Scholar 

  • Fiserova H, Mikusova Z, Klems M (2008) Estimation of ethylene production and 1-1-carboxylic acid content in plants by means of gas chromatography. Plant Soil Environ 54:55–60

    CAS  Google Scholar 

  • Hewitt E (1952) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Bucks

    Google Scholar 

  • Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011) Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant Cell Physiol 52:663–675

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol Plant Mol Biol 24:519–570

    Article  CAS  Google Scholar 

  • Islam MA, MacDonald SE, Zwiazek JJ (2003) Responses of black spruce (Picea mariana) and tamarack (Larix laricina) to flooding and ethylene. Tree Physiol 23:545–552

    Article  PubMed  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaluddin M, Zwiazek JJ (2002) Ethylene enhances water transport in hypoxic aspen. Plant Physiol 128:962–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-S, Mao X-T, Tian Q-Y, Li L-H, Zhang W-H (2009) Phosphorus deficiency-induced reduction in root hydraulic conductivity in Medicago falcata is associated with ethylene production. Environ Exp Bot 67:172–177

    Article  CAS  Google Scholar 

  • Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu D-T, Maurel C, Lin J (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Wang J, Li S et al (2016) Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato. Sci Rep 6:31814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma N, Xue J, Li Y, Liu X, Dai F, Jia W, Luo Y, Gao J (2008) Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol 148:894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Bousiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Mora V, Bacaicoa E, Zamarreno A-M, Aguirre E, Garnica M, Fuentes M, Garcia-Mina J-M (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    Article  CAS  PubMed  Google Scholar 

  • O’Malley RC, Rodriguez FI, Esch JJ, Binder BM, O’Donnell P, Klee HJ, Bleecker AB (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41:651–659

    Article  PubMed  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  PubMed  Google Scholar 

  • Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Mol Cell Proteom 7:1019–1030

    Article  CAS  Google Scholar 

  • Rawson HM, Begg JE, Woodward RG (1977) Effect of atmospheric humidity on photosynthesis, transpiration and water-use efficiency of leaves of several plant species. Planta 134:5–10

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Romera B, Ruiz-Lozano JM, Zamarreño AM, García-Mina JM, Aroca R (2016) Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26:111–122

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MC, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, Aroca R (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995–1008

    Article  PubMed  Google Scholar 

  • Satoh S, Esashi Y (1982) ά-Aminoisobutyric acid, propyl gallate and cobalt ion and the mode of inhibition of ethylene production by cotyledonary segments of cocklebur seeds. Physiol Plant 54:147–152

    Article  CAS  Google Scholar 

  • Steudle E (2001) The cohesion–tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TorNroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  Google Scholar 

  • Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151:843–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Poel B, Van Der Straeten D (2014) 1-Aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci 5:640

    PubMed  PubMed Central  Google Scholar 

  • Ververidis P, John P (1991) Complete recovery in vitro of ethylene-forming enzyme-activity. Phytochemistry 30:725–727

    Article  CAS  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z-F, Ying T-J, Zhang Y, Bao B-L, Huang X-D (2006) Characteristics of transgenic tomatoes antisensed for the ethylene receptor genes LeETR1 corrected and LeETR2 corrected. J Zhejiang Univ Sci B 7:591–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelaw CA, Lyssenko NN, Chen LW, Zhou DB, Mattoo AK, Tucker ML (2002) Delayed abscission and shorter internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. Plant Physiol 128:978–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal-transduction encoded by never-ripe. Science 270:1807–1809

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Yang F, Gao J (2009) Isolation of Rh-TIP1;1, an aquaporin gene and its expression in rose flowers in response to ethylene and water deficit. Postharvest Biol Technol 51:407–413

    Article  CAS  Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Economy and Competitiveness of Spain (Juan de la Cierva Program and AGL2011-25403 project) and Junta de Andalucía (P10-CVI-5920 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Aroca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo-Polanco, M., Ibort, P., Molina, S. et al. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants. Planta 246, 987–997 (2017). https://doi.org/10.1007/s00425-017-2746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2746-0

Keywords

Navigation