Skip to main content
Log in

Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The present review summarises current knowledge of phytoecdysteroids’ biosynthesis, distribution within plants, biological importance and relations to plant hormones.

Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28–29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids’ biosynthesis, distribution within plants, biological importance and relations to plant hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxy acetic acid

20E:

20-Hydroxyecdysone

ABA:

Abscisic acid

BRs:

Brassinosteroids

CKs:

Cytokinins

ECs:

Ecdysteroids

GAs:

Gibberellins

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

JAs:

Jasmonates

MeJA:

Methyl jasmonate

PEs:

Phytoecdysteroids

SLs:

Strigolactones

References

  • Adler JH, Grebenok RJ (1995) Biosynthesis and distribution of insect-molting hormones in plants—a review. Lipids 30:257–262. doi:10.1007/BF02537830

    Article  CAS  PubMed  Google Scholar 

  • Ahmad VU, Khaliq-Uz-Zaman SM, Ali MS, Perveen S, Ahmed W (1996) An antimicrobial ecdysone from Asparagus dumosus. Fitoterapia 67:88–91

    CAS  Google Scholar 

  • Bajguz A, Dinan L (2004) Effects of ecdysteroids on Chlorella vulgaris. Physiol Plant 121:349–357. doi:10.1111/j.1399-3054.2004.00329.x

    Article  CAS  Google Scholar 

  • Bakrim A, Lamhamdi M, Sayah F, Chibi F (2007) Effects of plant hormones and 20-hydroxyecdysone on tomato (Lycopersicum esculentum) seed germination and seedlings growth. Afr J Biotechnol 6:2792–2802

    Article  CAS  Google Scholar 

  • Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem 46:844–854. doi:10.1016/j.plaphy.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  • Becker JL, Roussaux J (1981) 6-Benzylaminopurine as a growth factor for Drosophila melanogaster cells grown in vitro. In: Guern J, Peaud-Lenoël C (eds) Metabolism and molecular activities of cytokinins. Springer, Berlin, pp 319–328

    Chapter  Google Scholar 

  • Bergamasco R, Horn DHS (1983) Distribution and role of insect hormones in plants. Endocrinology of insects. A. R. Liss Inc., New York, pp 627–654

    Google Scholar 

  • Butenandt A, Karlson P (1954) Über die Isolierung eines Metamorphose-hormons der Insekten in kristallisierter Form. Z Naturforsch 9B:389–391

    CAS  Google Scholar 

  • Canals D, Irurre-Santilari J, Casas J (2005) The first cytochrome P450 in ferns. FEBS J 272:4817–4825. doi:10.1111/j.1742-4658.2005.04897.x

    Article  CAS  PubMed  Google Scholar 

  • Casati S, Ottria R, Baldoli E, Lopez E, Maier JAM, Ciuffreda P (2011) Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer Res 31:3401–3406

    CAS  PubMed  Google Scholar 

  • Corio-Costet MF, Chapuis C, Moulilett JF, Delbeckque JP (1993) Sterol and ecdysteroid profiles of Serratula tinctoria (L.): plant and cell cultures producing steroids. Insect Biochem Mol Biol 23:175–180. doi:10.1016/0965-1748(93)90098-D

    Article  CAS  Google Scholar 

  • Corio-Costet MF, Chapuis L, Delbecque JP (1996) Serratula tinctoria (Dyer’s savory): in vitro culture and the production of ecdysteroids and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agricultural and forestry. Trees IV, Medicinal and Aromatic Plants, vol 37. Springer, Berlin, pp 384–401. doi:10.1007/978-3-662-08618-6_23

  • DellaGreca M, D’Abrosca B, Fiorentino A, Previtera L, Zarrelli A (2005) Structure elucidation and phytotoxicity of ecdysteroids from Chenopodium album. Chem Biodivers 2:457–462. doi:10.1002/cbdv.200590025

    Article  CAS  PubMed  Google Scholar 

  • Dinan L (1992) The analysis of phytoecdysteroids in single (preflowering stage) specimens of fat hen, Chenopodium album. Phytochem Anal 3:132–138. doi:10.1002/pca.2800030309

    Article  CAS  Google Scholar 

  • Dinan L (1998) A strategy towards the elucidation of the contribution made by phytoecdysteroids to the deterrence of invertebrate predators on plants. Russ J Plant Physiol 45:296–305

    CAS  Google Scholar 

  • Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339. doi:10.1016/S0031-9422(01)00078-4

    Article  CAS  PubMed  Google Scholar 

  • Dinan L (2009) The Karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol 72:126–141. doi:10.1002/arch.20334

    Article  CAS  PubMed  Google Scholar 

  • Dinan L, Hormann R (2005) Ecdysteroid agonists and antagonists. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 3. Elsevier, Amsterdam, pp 197–242

    Chapter  Google Scholar 

  • Dinan L, Savcenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58:121–1132. doi:10.1007/PL00000926

    Article  Google Scholar 

  • Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Berlin, pp 3–45. doi:10.1007/978-1-4020-9112-4_1

  • Dobrikova AG, Vladkova RS, Rashkov GD, Todinova SJ, Krumova SB, Apostolova EL (2014) Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions. Plant Physiol Biochem 80:75–82. doi:10.1016/j.plaphy.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  • Dreier SI, Towers GHN (1988) Activity of ecdysterone in selected plant growth bioassays. J Plant Physiol 132:509–512. doi:10.1016/S0176-1617(88)80073-7

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716. doi:10.1073/pnas.87.19.7713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust JR, Dice JF (1991) Evidence for isopentenyladenine modification on a cell cycle-regulated protein. J Biol Chem 266:9961–9970

    CAS  PubMed  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407. doi:10.1074/jbc.M801760200

    Article  CAS  PubMed  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513. doi:10.1074/jbc.M109.061432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430. doi:10.1038/343425a0

    Article  CAS  PubMed  Google Scholar 

  • Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I (2014) Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 163:178–185. doi:10.1016/j.foodchem.2014.04.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grebenok RJ, Adler JH (1993) Ecdysteroid biosynthesis during the ontogeny of spinach leaves. Phytochemistry 33:341–347. doi:10.1016/0031-9422(93)85514-R

    Article  CAS  Google Scholar 

  • Grebenok RJ, Ripa PV, Adler JH (1991) Occurrence and levels of ecdysteroids in spinach. Lipids 26:666–668. doi:10.1007/BF02536433

    Article  CAS  Google Scholar 

  • Grebenok RJ, Galbraith DW, Benveniste I, Feyereisen R (1996) Ecdysone 20-monooxygenase, a cytochrome P450 enzyme from spinach, Spinacia oleracea. Phytochemistry 420:927–933. doi:10.1016/0031-9422(96)00094-5

    Article  Google Scholar 

  • Guo DA, Vekatramesh M, Nes WD (1995) Developmental regulation of sterol biosynthesis in Zea mays. Lipids 30:203–219. doi:10.1007/BF02537823

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1988) In: Introduction to ecological biochemistry, 3rd edn. Academic Press, New York, pp 120–146

    Google Scholar 

  • Hendrix SD, Jones RL (1972) The activity of β-ecdysone in four gibberellin bioassays. Plant Physiol 50:199–200. doi:10.1104/pp.50.1.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holá D, Rothova O, Kocova M, Fridrichova L, Macek T (2012) Phytoecdysteroids together with brassinosteroids stimulate oxygen-evolving activity of photosystem II. Plant Biology Congress. Book of Abstracts, Freiburg, p 771

    Google Scholar 

  • Holá D, Kočová M, Rothová O, Tůmová L, Kamlar M, Macek T (2013) Exogenously applied 20-hydroxyecdysone increases the net photosynthetic rate but does not affect the photosynthetic electron transport or the content of photosynthetic pigments in Tetragonia tetragonioides L. Acta Physiol Plant 35:3489–3495. doi:10.1007/s11738-013-1379-6

    Article  Google Scholar 

  • Horn DHS, Bergamasco R (1985) Chemistry of ecdysteroids. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 7. Pergamon Press, New York, pp 185–248

    Google Scholar 

  • Howe G, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. doi:10.1146/annurev.arplant.59.032607.092825

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Toyosato T, Sakai M, Sato Y, Fujioka S, Murata E, Goto M (1969) Screening results of plants for phytoecdysones. Chem Pharm Bull 17:335–339

    Article  CAS  PubMed  Google Scholar 

  • Isaac RE, Rose ME, Rees HH, Goodwin TW (1982) Identification of ecdysone-22-phosphate and 2-deoxyecysone-22-phosphate in eggs of the desert locust, Schistocerca gregaria, by fast atom bombardment mass spectrometry and NMR spectroscopy. J Chem Soc Chem Commun 4:249–251. doi:10.1039/c39820000249

    Article  Google Scholar 

  • Kamlar M, Rothova O, Salajkova S, Tarkowska D, Drasar P, Kocova M, Harmatha J, Hola D, Kohout L, Macek T (2015) The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L. Steroids 97:107–112. doi:10.1016/j.steroids.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  • Kapur P, Wuttke W, Jarry H, Seidlova-Wuttke D (2010) Beneficial effects of beta-ecdysone on the joint, epiphyseal cartilage tissue and trabecular bone in ovariectomized rats. Phytomedicine 17:350–355. doi:10.1016/j.phymed.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194. doi:10.1074/jbc.M208659200

    Article  CAS  PubMed  Google Scholar 

  • Kholodova YD, Baltaev U, Volovenko VO, Gorovits MB, Abubakirov NK (1979) Phytoecdisones of Serratula xeranthemoides. Khim Priv Soedin 2:171–174

    Google Scholar 

  • Koudela K, Tenora I, Bajer J, Maťhová A, Sláma K (1995) Stimulation of growth and development in Japanese quails after oral administration of ecdysteroid-containing diet. Eur J Entomol 92:349–354

    CAS  Google Scholar 

  • Kubo I, Hanke FJ (1986) Chemical methods for isolating and identifying phytochemicals biologically active in insects. In: Miller JR, Miller TA (eds) Insect plant interactions. Springer, New York, pp 225–249

    Chapter  Google Scholar 

  • Kubo I, Klocke JA (1983) Isolation of phytoecdysones as insect ecdysis inhibitors and feeding deterrents. In: Hedin EA (ed) Plant resistance to insects. American Chemical Society, Washington, DC, pp 329–346

    Chapter  Google Scholar 

  • Kumpun S, Maria A, Crouzet S, Evrard-Todeschi N, Girault J-P, Lafont R (2011) Ecdysteroids from Chenopodium quinoa Willd., an ancient Andean crop of high nutritional value. Food Chem 125:1226–1234. doi:10.1016/j.foodchem.2010.10.039

    Article  CAS  Google Scholar 

  • Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafont R, Harmatha J, Marion-Poll F, Dinan L (2002) Ecdybase—the ecdysone handbook, 3rd edn. Cybersales, Praha. http://ecdybase.org

  • Lagueux M, Hetru C, Goltzene F, Kappler C, Hoffmann JA (1979) Ecdysone titre and metabolism in relation to cuticulogenesis in embryos of Locusta migratoria. J Insect Physiol 25:709–723. doi:10.1016/0022-1910(79)90123-9

    Article  CAS  Google Scholar 

  • Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19:207–226. doi:10.1677/jme.0.0190207

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65. doi:10.1146/annurev.arplant.50.1.47

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Uhlik O, Kamlar M, Harmatha J, Kohout L (2008) Method of increasing of the photosynthetic carbon dioxide assimilation yield (IOCB AS CR). PCT Int Appl WO 2008(125069):A2

    Google Scholar 

  • Macháčková I, Vágner M, Sláma K (1995) Comparison between the effects of 20-hydroxyecdysone and phytohormones on growth and development in plants. Eur J Entomol 92:309–316

    Google Scholar 

  • MacMillan J (1998) Gibberellin metabolism. Pure Appl Chem 50:995–1004. doi:10.1351/pac197850090995

    Google Scholar 

  • Maršálek B, Šimek M, Smith RJ (1992) The effect of ecdysone on the cyanobacterium Nostoc 6720. Z Naturforsch 47c:726–730

    Google Scholar 

  • Nes WR (1977) Biochemistry of plant sterols. Adv Lipid Res 15:233–324

    Article  CAS  Google Scholar 

  • Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, pp 411–533

    Google Scholar 

  • Niwa R, Niwa RS (2014) Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 78:1283–1292. doi:10.1080/09168451.2014.942250

    Article  CAS  PubMed  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A-M (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966. doi:10.1002/(SICI)1097-0010(20000515)80:7<939:AID-JSFA644>3.3.CO;2-3

    Article  CAS  Google Scholar 

  • Rajabi M, Signorelli P, Gorincioi E, Ghidoni R, Santaniello E (2010) Antiproliferative activity of N6-isopentenyladenosine on MCF-7 breast cancer cells: cell cycle analysis and DNA-binding study. DNA Cell Biol 29:687–691. doi:10.1089/dna.2010.1073

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574. doi:10.1039/a709175c

    Article  CAS  PubMed  Google Scholar 

  • Rothová O, Holá D, Kočová M, Tůmová L, Hnilička F, Hniličková H, Kamlar M, Macek T (2014) 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids 85:44–57. doi:10.1016/j.steroids.2014.04.006

    Article  PubMed  Google Scholar 

  • Salt TA, Adler JH (1985) Diversity of sterol composition in the family Chenopodiaceae. Lipids 20:594–601. doi:10.1007/BF02534285

    Article  CAS  Google Scholar 

  • Savchenko T, Whiting P, Šik V, Underwood E, Sarker SD, Dinan L (1998) Distribution and identities of phytoecdysteroids in the genus Briza (Gramineae). Biochem Syst Ecol 26:781–791. doi:10.1016/S0305-1978(98)00044-1

    Article  CAS  Google Scholar 

  • Schmelz EA, Grebenok RJ, Galbraith DW, Bowers WS (1998) Damage-induced accumulation of phytoecdysteroids in spinach: a rapid root response involving the octadecanoic acid pathway. J Chem Ecol 24:339–360. doi:10.1023/A:1022588610232

    Article  CAS  Google Scholar 

  • Schmelz EA, Grebenok RJ, Galbraith DW, Bowers WS (1999) Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. J Chem Ecol 25:1739–1757. doi:10.1023/A:1020969413567

    Article  CAS  Google Scholar 

  • Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS (2002) Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Arch Insect Biochem Physiol 51:204–221. doi:10.1002/arch.10062

    Article  CAS  PubMed  Google Scholar 

  • Seidlova-Wuttke D, Christel D, Kapur P, Nguyen BT, Jarry H, Wuttke W (2010) Beta-ecdysone has bone protective but no estrogenic effects in ovariectomized rats. Phytomedicine 17:884–889. doi:10.1016/j.phymed.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  • Sharma SP, Kaur P, Rattan SIS (1995) Plant-growth hormone kinetin delays ageing, prolongs the life span and slows development of the fruit fly Zaprionus paravittiger. Biochem Biophys Res Commun 216:1067–1071. doi:10.1006/bbrc.1995.2729

    Article  CAS  PubMed  Google Scholar 

  • Slama K, Lafont R (1995) Insect hormones—ecdysteroids: their presence and actions in vertebrates. Eur J Entomol 92:355–377

    CAS  Google Scholar 

  • Soriano IR, Riley IT, Potter MJ, Bowers WS (2004) Phytoecdysteroids: a novel defense against plant-parasitic nematodes. J Chem Ecol 30:651–654. doi:10.1023/B:JOEC.0000045584.56515.11

    Article  Google Scholar 

  • Syrov VN, Khushbaktova ZA (1996) Wound-healing effects of ecdysteroids. Doklady Akademii Nauk Respubliki Uzbekistana 12:47–50

    Google Scholar 

  • Tanimoto S, Harada H (1982) Effect of cytokinin and anticytokinin on the initial stage of adventitious bud differentiation in the epidermis of Torenia stem segments. Plant Cell Physiol 23:1371–1376

    CAS  Google Scholar 

  • Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, Rolčík J, Strnad M (2014) Quo vadis plant hormone analysis? Planta 240:55–76. doi:10.1007/s00425-014-2063-9

    Article  PubMed  Google Scholar 

  • Tsoupras G, Hetru C, Luu B, Lagueux M, Constantin E, Hoffmann JA (1982a) The major conjugates of ecdysteroids in young eggs and in embryos of Locusta-migratoria. Tetrahedron Lett 23:2045–2048. doi:10.1016/S0040-4039(00)87256-1

    Article  CAS  Google Scholar 

  • Tsoupras G, Luu B, Hoffmann JA (1982b) Isolation and identification of three ecdysteroid conjugates with a C-20 hydroxy group in eggs of Locusta migratoria. Steroids 40:551–560. doi:10.1016/0039-128X(82)90075-7

    Article  CAS  PubMed  Google Scholar 

  • Tsoupras G, Luu B, Hoffmann JA (1983) A cytokinin (isopentenyl-adenosyl-mononucleotide) linked to ecdysone in newly laid eggs of Locusta migratoria. Science 220:507–509. doi:10.1126/science.220.4596.507

    Article  CAS  PubMed  Google Scholar 

  • Udalova ZV, Zinov’eva SV, Vasil’eva IS, Paseshnichenko VA (2004) Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Appl Biochem Microbiol 40:93–97. doi:10.1023/B:ABIM.0000010362.79928.77

    Article  CAS  Google Scholar 

  • Uozumi N, Makino S, Kobayashi T (1995) 20-Hydroxyecdysone production in Ajuga hairy root controlling intracellular phosphate content based on kinetic model. J Ferment Bioeng 80:362–368. doi:10.1016/0922-338X(95)94205-6

    Article  CAS  Google Scholar 

  • Voigt B, Whiting P, Dinan L (2001) The ecdysteroid agonist/antagonist and brassinosteroid-like activities of synthetic brassinosteroid/ecdysteroid hybrid molecules. Cell Mol Life Sci 58:1133–1140. doi:10.1007/PL00000927

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. doi:10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Patterson GW, Lusby WR, Schmid KM, Salt TA (1990) The distribution and phylogenetic significance of desmethylsterols in Chenopodium and Atriplex: coexistence of Δ7- and Δ5-sterols. Lipids 25:61–64. doi:10.1007/BF02562429

    Article  CAS  Google Scholar 

  • Zibareva L (2000) Distribution and levels of phytoecdysteroids in plants of the genus Silene during development. Arch Insect Biochem Physiol 43:1–8. doi:10.1002/(SICI)1520-6327(200001)43:1<1:AID-ARCH1>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of Education, Youth and Sport of the Czech Republic through the National Program of Sustainability (Grant No. LO 1204) is gratefully acknowledged. The authors would like to also express thanks to Sees-editing Ltd., Prof. Claus Wasternack and Dr. Juraj Harmatha for their critical reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuše Tarkowská.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkowská, D., Strnad, M. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones. Planta 244, 545–555 (2016). https://doi.org/10.1007/s00425-016-2561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2561-z

Keywords

Navigation