Skip to main content
Log in

Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Crystal structure of a reported PA2 albumin from Cicer arietinum shows that it belongs to hemopexin fold family, has four beta-propeller motifs and possesses hemagglutination activity, making it different from known legume lectins.

A plant albumin (PA2) from Cicer arietinum, presumably a lectin (CAL) owing to its hemagglutination activity which is inhibited by complex sugars as well as glycoproteins such as fetuin, desialylated fetuin and fibrinogen. The three-dimensional structure of this homodimeric protein has been determined using X-ray crystallography at 2.2 Å in two crystal forms: orthorhombic (P21212) and trigonal (P3). The structure determined using molecular replacement method and refined in orthorhombic crystal form reached R-factors R free 22.6 % and R work 18.2 % and in trigonal form had 22.3 and 17.9 % in the resolution range of 20.0–2.2 and 35.3–2.2 Å, respectively. Interestingly, unlike the known legume lectin fold, the structure of this homodimeric hemagglutinin belonged to hemopexin fold that consisted of four-bladed β-propeller architecture. Each subunit has a central cavity forming a channel, inside of which is lined with hydrophobic residues. The channel also bears binding sites for ligands such as calcium, sodium and chloride ions, iodine atom in the case of iodine derivative and water molecules. However, none of these ligands seem important for the sugar recognition. No monosaccharide sugar specificity could be detected using hemagglutination inhibition. Chemical modification studies identified a potential sugar-binding site per subunit molecule. Comparison of C-alpha atom positions in subunit structures showed that the deviations between the two crystal forms were more with respect to blades I and IV. Differences also existed between subunits in two forms in terms of type and site of ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAL:

Cicer arietinum lectin

DEPC:

Diethyl pyrocarbonate

WRK:

Woodward’s reagent K

PMSF:

Phenylmethylsulfonyl fluoride

TNBS:

Trinitrobenzenesulphonic acid

NBS:

N-bromosuccinimide

PG:

Phenylglyoxal

References

  • Adamek-Swierczynska S, Kozik A (2002) Multiple thiamin-binding proteins of legume seeds: thiamine-binding vicilin of Vicia faba versus thiamine-binding albumin of Pisum sativum. Plant Physiol Biochem 40:735–741

    Article  CAS  Google Scholar 

  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D 66:213–222

    Article  CAS  Google Scholar 

  • Baker SC, Saunders NFW, Willis AC, Ferguson SJ, Hajdu J, Fülöp V (1997) Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to β-propeller folds. J Mol Biol 269:440–455

    Article  CAS  PubMed  Google Scholar 

  • Barondes SH (1988) Bifunctional properties of lectins:lectins redefined. Trends Biochem Sci 13:480–482

    Article  CAS  PubMed  Google Scholar 

  • Beisel H-G, Kawabata S-i, Iwanaga S, Huber R, Bode W (1999) Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J 18:2313–2322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourne Y, Cambillau C (1990) Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of the monosaccharide-binding site. Proteins 8:365–376

    Article  CAS  PubMed  Google Scholar 

  • CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D 50:760–763

    Article  Google Scholar 

  • Chattopadhyay T, Bhattacharyya S, Das AK, Maiti MK (2012) A structurally novel hemopexin fold protein of rice plays role in chlorophyll degradation. Biochem Biophys Res Commun 420:862–868

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific LLC, Palo Alto, California, USA. http://www.pymol.org

  • Delbaere L, Vandonselaar M, Quail J (1993) Structures of the lectin IV of Griffonia simplicifolia and its complex with the Lewis b human blood group determinant at 2.0 Å resolution. J Mol Biol 230:950–965

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Chen G, Yang W, Yang JJ (2006) Predicting calcium-binding sites in proteins-A graph theory and geometry approach. Protein Struct Funct Bioinf 64:34–42

    Article  CAS  Google Scholar 

  • Dharker PN, Gaikwad SM, Suresh CG, Dhuna V, Khan MI, Singh J, Kamboj SS (2009) Comparative studies of two araceous lectins by steady state and time-resolved fluorescence and CD spectroscopy. J Fluoresc 19:239–248

    Article  CAS  PubMed  Google Scholar 

  • Dhuna V, Bains JS, Kamboj SS, Singh J, Saxena S (2005) Purification and characterization of a lectin from Arisaema tortuosum Schott having in vitro anticancer activity against human cancer cell lines. J Biochem Mol Biol 38:526–532

    Article  CAS  PubMed  Google Scholar 

  • Dhuna V, Kamboj SS, Kaur A, Saxena AK, Bhide SV, Shanmugavel, Singh J (2007) Characterization of a lectin from Gonatanthus pumilus D. Don having anti-proliferative effect against human cancer cell lines. Protein Pept Lett 14:71–78

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Cunningham BA, Reeke GN Jr, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci 69(9):2580–2584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K (2004) COOT: model-building tools for molecular graphics. Acta Cryst D 60:2126–2132

    Article  Google Scholar 

  • Fülöp V, Jones DT (1999) β-Propellers: structural rigidity and functional diversity. Curr Opin Struct Biol 9:715–721

    Article  PubMed  Google Scholar 

  • Gaur V, Qureshi IA, Singh A, Chanana V, Salunke DM (2010) Crystal structure and functional insights of hemopexin fold protein from grass pea. Plant Physiol 152:1842–1850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaur V, Chanana V, Jain A, Salunke DM (2011) The structure of a haemopexin-fold protein from cow pea (Vigna unguiculata) suggests functional diversity of haemopexins in plants. Acta Cryst F67:193–200

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gohlke U, Gomis-Rfith F-X, Crabbe T, Murphy G, Docherty AJP, Bode W (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Lett 378:126–130

    Article  CAS  PubMed  Google Scholar 

  • Gold AM, Fahrney D (1964) Sulfonyl fluorides as inhibitors of esterases. 11. Formation and reactions of phenylmethanesulfonyl α-chymotrypsin. J Biochem 3:783–791

    Article  CAS  Google Scholar 

  • Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucl Acids Res 31:3320–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurjar MM, Khan MI, Gaikwad SM (1998) α-Galactoside binding lectin from Artocarpus hirsuta: characterization of the sugar specificity and the binding site. Biochim Biophys Acta 1381:256–264

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Partida AM, Robles-Burgueño MR, Ortega-Nieblas M, Vázquez-Moreno I (2004) Purification and characterization of complex carbohydrate specific isolectins from wild legume seeds: Acacia constricta is (vinorama) highly homologous to Phaseolus vulgaris lectins. Biochimie 86:335–342

    Article  PubMed  Google Scholar 

  • Habeeb AFSA (1966) Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem 14:328–336

    Article  CAS  PubMed  Google Scholar 

  • Imberty A, Gautier C, Lescar J, Perez S, Wynsi L, Loris R (2000) An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. J Biol Chem 275:17541–17548

    Article  CAS  PubMed  Google Scholar 

  • Kamemura K, Furuichi Y, Umekawa H, Takahashi T (1993) Purification and characterization of novel lectins from Great Northern bean, Phaseolus vulgaris L. Biochim Biophys Acta 1158:181–188

    Article  CAS  PubMed  Google Scholar 

  • Kaneda Y, Whittier RF, Yamanaka H, Carredano E, Gotoh M, Sota H, Hasegawa Y, Shinohara Y (2002) The high specificities of Phaseolus vulgaris erythro- and leukoagglutinating lectins for bisecting GlcNAc or β1-6-linked branch structures, respectively, are attributable to loop B. J Biol Chem 277:16928–16935

    Article  CAS  PubMed  Google Scholar 

  • Katre UV (2007) Structural studies on two hemagglutinins from Cicer arietinum and Moringa oleifera, and a study of polymorphism in the crystals of plant lectins. Ph.D thesis, University of Pune, Maharastra, India

  • Katre UV, Gaikwad SM, Bhagyawant SS, Deshpande UD, Khan MI, Suresh CG (2005) Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea). Acta Cryst F61:141–143

    Google Scholar 

  • Katre UV, Suresh CG, Khan MI, Gaikwad SM (2008) Structure–activity relationship of a hemagglutinin from Moringa oleifera seeds. Int J Biol Macromol 42:203–207

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Singh K, Rup PJ, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J (2006a) A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J Biochem Mol Biol 39:432–440

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Singh K, Rup PJ, Saxena AK, Khan RH, Ashraf MT, Kamboj SS, Singh J (2006b) A tuber lectin from Arisaema helleborifolium Schott with anti-insect activity against melon fruit fly, Bactrocera cucurbitae (Coquillett) and anti-cancer effect on human cancer cell lines. Arch Biochem Biophys 445:156–165

    Article  CAS  PubMed  Google Scholar 

  • Kolberg J, Michaelsen TE, Sletten K (1983) Properties of a lectin purified from the seeds of Cicer arietinum. Hoppe-Seyler’s Z Physiol Chem 364:655–664

    Article  CAS  PubMed  Google Scholar 

  • Kostla´nova´ N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M, Gilboa-Garber N, Chambat G, Wimmerova M, Imberty A (2005) The Fucose-binding Lectin from Ralstonia solanacearum. A new type of β-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280:27839–27849

    Article  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–794

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, McArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereo-chemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Li J, Brick P, O’Hare MVC, Skarzynski T, Lloyd LF, Curry VA, Clark IM, Bigg HF, Hazleman BL, Cawston TE, Blow DM (1995) Structure off full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3:541–549

    Article  CAS  PubMed  Google Scholar 

  • Murshudov GN, Dodson EJ, Vagin AA (1996) Application of maximum likelihood methods for macromolecular refinement. In: Proceedings of the CCP4 study weekend (Macromolecular Refinement), pp 93–104

  • Murshudov GN, Vagin AA, Dodson J (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D 53:240–255

    Article  CAS  Google Scholar 

  • Ota K, Mikelj M, Papler T, Leonardi A, Križaj I, Maček P (2013) Ostreopexin: a hemopexin fold protein from the oyster mushroom, Pleurotus ostreatus. Biochim Biophys Acta 1834:1468–1473

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Ovadi J, Libor S, Elodi P (1967) Spectrophotometric determination of histidine in protein with diethylpyrocarbonate. Acta Biochem Biophys 2:455–458

    CAS  Google Scholar 

  • Paoli M (2001) Protein folds propelled by diversity. Prog Biophys Mol Biol 76:103–130

    Article  CAS  PubMed  Google Scholar 

  • Paoli M, Anderson BF, Baker HM, Morgan WT, Smith A, Baker EN (1999) Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two-propeller domains. Nat Struct Mol Biol 6:926–931

    Article  CAS  Google Scholar 

  • Pedroche J, Yust MM, Lqari H, Megı´as C, Giro´n-Calle J, Alaiz M, Milla´n F, Vioque J (2005) Chickpea pa2 albumin binds hemin. Plant Sci 168:1109–1114

    Article  CAS  Google Scholar 

  • Pidcock E, Geoffrey RM (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem 6:479–489

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Chatterjee BP (1995) Saracin: a lectin from Saraca indica seed integument recognizes complex carbohydrates. Phytochemistry 40:643–649

    Article  CAS  PubMed  Google Scholar 

  • Reeke GN Jr, Becker JW, Cunningham BA, Wang JL, Yahara I, Edelman GM (1975) Structure and function of concanavalin A. Adv Exp Med Biol 55:13–33

    Article  CAS  PubMed  Google Scholar 

  • Rini JM (1995) Lectin structure. Annu Rev Biophys Biomol Struct 24:551–577

    Article  CAS  PubMed  Google Scholar 

  • Riordan JF, Wacker WEC, Vallee BL (1965) N-Acetylimidazole: a reagent for determination of “free” tyrosyl residues of proteins. Biochem J 4:1758–1765

    Article  CAS  Google Scholar 

  • Saha RP, Bahadur RP, Pal A, Mandal S, Chakrabarti P (2006) ProFace: a server for the analysis of the physicochemical features of protein-protein interfaces. BMC Struc Biol 6:11. doi:10.1186/1472-6807-6-11

    Article  Google Scholar 

  • Shangary S, Jatinder S, Sukhdev SK, Kulwant KK, Rajinder SS (1995) Purification and properties of four monocot lectins from the family Araceae. Phytochemistry 40:449–455

    Article  CAS  PubMed  Google Scholar 

  • Singh Bains J, Singh J, Kamboj SS, Nijjar K, Agrewala JN, Kumar V, Kumar A, Saxena AK (2005) Mitogenic and anti-proliferative activity of a lectin from the tubers of Voodoo lily (Sauromatum venosum). Biochim Biophys Acta 1723:163–174

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Singh J, Kamboj SS (2004) A novel mitogenic and antiproliferative lectin from a wild cobra lily, Arisaema flavum. Biochem Biophys Res Commun 318:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Sinha U, Brewer JM (1985) A spectrophotometric method for quantitation of carboxyl group modification of proteins using Woodward’s Reagent K. Anal Biochem 151:327–333

    Article  CAS  PubMed  Google Scholar 

  • Spande TF, Witkop B (1967) Determination of the tryptophan content of proteins with N-bromosuccinimide. Methods Enzymol 11:498–506

    Article  CAS  Google Scholar 

  • Takahashi K (1968) The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem 243:6171–6179

    CAS  PubMed  Google Scholar 

  • Urvashi S, Gaikwad SM, Suresh CG, Dhuna V, Singh J, Kamboj SS (2011) Conformational transitions in Ariesaema curvatum lectin: characterization of an acid induced active molten globule. J Fluoresc 21(2):753–763

    Article  Google Scholar 

  • Vigeolas H, Chinoy C, Zuther E, Blessington B, Geigenberger P, Domoney C (2008) Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol 146:74–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vijayan M, Chandra N (1999) Lectins. Curr Opin Struct Biol 9:707–714

    Article  CAS  PubMed  Google Scholar 

  • Vioque J, Clemente A, Sanchez-Vioque R, Pedroche J, Bautista J, Millan F (1998) Comparative study of chickpea and pea pa2 albumins. J Agric Food Chem 46:3609–3613

    Article  CAS  Google Scholar 

  • Wakankar MS, Patel KA, Krishnasastry MV, Gaikwad SM (2013) Solution and in silico ligand binding studies of Cicer arietinum lectin. Biochem Physiol S2. doi:10.4172/2168-9652.S2-002

  • Wimmerova M, Mitchell E, Sanchez J-F, Gautier C, Imberty A (2003) Crystal structure of fungal lectin. Six bladed β-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278:27059–27067

    Article  CAS  PubMed  Google Scholar 

  • Wright CS (1997) New folds of plant lectins. Curr Opin Struc Biol 7:631–636

    Article  CAS  Google Scholar 

  • Wright LM, Van Damme EJM, Barre A, Allen AK, Van Leuven F, Reynolds CD, Rouge P, Peumans WJ (1999) Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (Scilla campanulata) bulbs. Biochem J 340:299–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright LM, Reynolds CD, Rizkallah PJ, Allen AK, Van Damme EJM, Donovan MJ, Peumans WJ (2000) Structural characterisation of the native fetuin-binding protein Scilla campanulata agglutinin: a novel two-domain lectin. FEBS Lett 468:19–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank DST for project funding. US thanks UGC, Govt. of India and UK thanks CSIR, New Delhi for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U., Katre, U.V. & Suresh, C.G. Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity. Planta 241, 1061–1073 (2015). https://doi.org/10.1007/s00425-014-2236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2236-6

Keywords

Navigation