Skip to main content
Log in

Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The outcome of simultaneously increasing SPS and GS activities in transgenic tobacco, suggests that sucrose is the major determinant of growth and development, and is not affected by changes in N assimilation.

Abstract

Carbon (C) and nitrogen (N) are the major components required for plant growth and the metabolic pathways for C and N assimilation are very closely interlinked. Maintaining an appropriate balance or ratio of sugar to nitrogen metabolites in the cell, is important for the regulation of plant growth and development. To understand how C and N metabolism interact, we manipulated the expression of key genes in C and N metabolism individually and concurrently and checked for the repercussions. Transgenic tobacco plants with a cytosolic soybean glutamine synthetase (GS1) gene and a sucrose phosphate synthase (SPS) gene from maize, both driven by the CaMV 35S promoter were produced. Co-transformants, with both the transgenes were produced by sexual crosses. While GS is the key enzyme in N assimilation, involved in the synthesis of glutamine, SPS plays a key role in C metabolism by catalyzing the synthesis of sucrose. Moreover, to check if nitrate has any role in this interaction, the plants were grown under both low and high nitrogen. The SPS enzyme activity in the SPS and SPS/GS1 co-transformants were the same under both nitrogen regimens. However, the GS activity was lower in the co-transformants compared to the GS1 transformants, specifically under low nitrogen conditions. The GS1/SPS transformants showed a phenotype similar to the SPS transformants, suggesting that sucrose is the major determinant of growth and development in tobacco, and its effect is only marginally affected by increased N assimilation. Sucrose may be functioning in a metabolic capacity or as a signaling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SPS:

Sucrose phosphate synthase

GS1:

Cytosolic glutamine synthetase

Suc:

Sucrose

Glc:

Glucose

Gln:

Glutamine

HN:

High nitrogen

LN:

Low nitrogen

C:

Carbon

N:

Nitrogen

NT:

Non transformed

MzSPS :

Maize SPS gene

Gmgln150 :

Soybean GS1 gene without 3′UTR

GS1/SPS:

Co-transformant with both GS 1 and SPS genes

References

  • Aleman L, Ortega JL, Martinez-Grimes M, Seger M, Holguin FO, Uribe DJ, Garcia-Ibilcieta D, Sengupta-Gopalan C (2010) Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa). Planta 231:233–244

    Article  CAS  PubMed  Google Scholar 

  • Baena-Gonzalez E (2010) Energy signaling in the regulation of gene expression during stress. Mol Plant 3:300–313

    Article  CAS  PubMed  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  CAS  PubMed  Google Scholar 

  • Barsch A, Tellstrom V, Patschkowski T, Kuster H, Niehaus K (2006) Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol Plant Microbe Interact 19:998–1013

    Article  CAS  PubMed  Google Scholar 

  • Baxter CJ, Foyer CH, Turner J, Rolfe SA, Quick WP (2003) Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J Exp Bot 54:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620

    Article  CAS  PubMed  Google Scholar 

  • Carvalho HG, Lopes-Cardoso IA, Lima LM, Melo PM, Cullimore JV (2003) Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression. Plant Physiol 133:243–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman HD, Beamish L, Reid AM, Park JY, Mansfield SD (2010) Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Res 19:269–283

    Article  CAS  PubMed  Google Scholar 

  • Commichau FM, Forchhammer K, Stulke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167–172

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Bernier G, Prilleux C (2002) C to N ratio increases in the phloem sap during floral transition of the long day plants Sinapsis alba and Arabidopsis thaliana. Plant Cell Physiol 43:684–688

    Article  CAS  PubMed  Google Scholar 

  • Coruzzi GM, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr Opin Plant Biol 4:247–253

    Article  CAS  PubMed  Google Scholar 

  • Eckes P, Schmitt P, Daub W, Wagenmayer F (1989) Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol Gen Genet 217:263–268

    Article  CAS  PubMed  Google Scholar 

  • El-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG (2004) Transgenic poplar characterized by ectopic expression of a pine glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol 24:729–736

    Article  CAS  PubMed  Google Scholar 

  • Engels C, Kirkby E, White P (2012) Mineral nutrition, yield and source-sink relationships. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic Press Elsevier, London, pp 85–135

    Chapter  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signaling, and plant development. J Exp Bot 63:3367–3377

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AR, Sims AP (1971) Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: its role in the regulation of glutamine synthesis in yeasts. J Gen Microbiol 69:423–427

    Article  CAS  PubMed  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G, Verrier P (2006) Photosynthetic carbon-nitrogen interactions: modeling inter-pathway control and signaling. In: Plaxton W, McManus MT (eds) Ann plant reviews: control of primary metabolism in plants. Blackwell, Oxford, pp 325–347

    Chapter  Google Scholar 

  • Fu J, Sampalo R, Gallardo F, Cánovas FM, Kirby AG (2003) Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young leaves. Plant Cell Environ 26:411–418

    Article  CAS  Google Scholar 

  • Fuentes SI, Allen DJ, Ortiz-Lopez A, Hernández G (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Gallardo F, Fu J, Cantón FR, García-Gutiérrez A, Cánovas FM, Kirby G (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26

    Article  CAS  PubMed  Google Scholar 

  • Galtier N, Foyer C, Murchie E, Alred R, Quick P, Voelker T, Thepenier C, Lasceve G, Betsche T (1995) Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase. J Exp Bot 46:1335–1344

    Article  CAS  Google Scholar 

  • Grof CPL, Albertson PL, Bursle J, Perroux JM, Bonnett GD, Manners JM (2007) Sucrose-phosphate synthase, a biochemical marker of high sucrose accumulation in sugarcane. Crop Sci 47:1530–1539

    Article  CAS  Google Scholar 

  • Haigler C, Singh B, Zhang D et al (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, de Crescenzo MP, Sene O, Hirel B (2003) Does lowering glutamine synthetase activity in nodules, modify nitrogen metabolism and growth of Lotus japonicus? Plant Physiol 133:253–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huber SC (2007) Exploring the role of protein phosphorylation in plants: from signaling to metabolism. Biochem Soc Trans 35:28–35

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Ono K, Kashiwagi T (2004) Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta 218:388–395

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Oshugi R (2008) Overexpression of a maize SPS gene improves yield characters of potato under field conditions. Plant Product Sci 11:104–107

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirby EG, Gallardo F, Man HM, RI-Khatib R (2006) The overexpressionof glutamine synthetase in transgenic poplar: a review. Silvea Genetica 55:278–284

    Google Scholar 

  • Laporte MM, Galagan JA, Shapiro JA, Boersig MR, Shewmaker CK, Sharkey TD (1997) Sucrose-phosphate synthase activity and yield analysis of tomato plants transformed with maize sucrose-phosphate synthase. Planta 203:253–259

    Article  CAS  Google Scholar 

  • Laporte MM, Galagan JA, Prasch AL, Vanderveer PJ, Hanson DT, Shewmaker CK, Sharkey TD (2001) Promoter strength and tissue specificity effects on growth of tomato plants transformed with maize sucrose-phosphate synthase. Planta 212:817–822

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Miflin BJ (2011) Nitrogen assimilation and its relevance to crop improvement. In: Foyer C, Zhang H (eds) Annual plant reviews, nitrogen metabolism in plants in the postgenomic era, vol 42. Willey-Blackwell, USA, pp 1–40

    Google Scholar 

  • Lemaitre T, Urbanczyk-Wochianiak E, Flesch V, Bismuth E, Fernie AR, Hodges M (2007) NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant Physiol 144:1546–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lima L, Saebra A, Melo P, Cullimore J, Carvalho H (2006) Post-translational regulation of cytosolic glutamine synthetase of Medicago truncatula. J Exp Bot 57:2751–2761

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu Y, Yang JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biol 51:11–19

    Article  CAS  Google Scholar 

  • Loreti E, Bellis LD, Alp A, Perata P (2001) Why and how do plant cells sense sugars? Ann Bot 88:803–812

    Article  CAS  Google Scholar 

  • Lunn JE, MacRae E (2003) New complexities in the synthesis of sucrose. Curr Opin Plant Biol 6:208–214

    Article  CAS  PubMed  Google Scholar 

  • MacRae EA, Lunn JE (2006) Control of sucrose biosynthesis. In: Plaxton W, MacManus M (eds) Advances in plant research—control of primary metabolism in plants. Blackwell, Oxford, pp 234–257

    Chapter  Google Scholar 

  • Man HM, Boriel R, El Khatib R, Kirby EG (2005) Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine syntheatse under conditions of varying nitrogen availability. New Phytol 167:31–39

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Micallef BJ, Haskins KA, Vanderveer PJ, Roh K-S, Shewmaker CK, Sharkey TD (1995) Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196:327–334

    Article  CAS  Google Scholar 

  • Moghaddam MRB, Ende WV (2013) Sugars, the clock and transition to flowering. Front Plant Sci 4:22

    Article  PubMed Central  Google Scholar 

  • Nguyen-Quoc B, Foyer C (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Quoc B, N’Tchobo H, Foyer C, Yelle S (1999) Overexpression of sucrose phosphate synthase increases sucrose unloading in transformed tomato fruit. J Exp Bot 50:785–791

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant Carbon Nitrogen interactions. Mol Plant 3:973–996

    Article  CAS  PubMed  Google Scholar 

  • O’Hara LE, Paul MJ, Wingler A (2012) How do sugars regulate plant growth and development? New insight into the role of Trehalose-6-phosphate. Mol Plant 6:261–273

    Article  PubMed  Google Scholar 

  • Oliveira IC, Coruzzi G (1999) Carbon and amino acids reciprocally modulate the expression of plastidic glutamine synthetase in Arabidopsis thaliana. Plant Physiol 121:301–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortega JL, Roche D, Sengupta-Gopalan C (1999) Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies. Plant Physiol 119:1483–1495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortega JL, Temple SJ, Sengupta-Gopalan C (2001) Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol 126:109–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortega JL, Temple S, Bagga S, Ghoshroy S, Sengupta-Gopalan C (2004) Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene. Planta 219:807–818

    Article  CAS  PubMed  Google Scholar 

  • Ortega JL, Moguel-Esponda S, Potenza C, Conklin CF, Quintana A, Sengupta-Gopalan C (2006) The 3′ untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J 45:832–846

    Article  CAS  PubMed  Google Scholar 

  • Palenchar P, Kouranov A, Lejay L, Coruzzi G (2004) Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biol 5:R91

    Article  PubMed Central  PubMed  Google Scholar 

  • Park JY, Canam T, Kang KY, Ellis DD, Mansfield S (2008) Over-expression of an arabidopsis family a sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res 17:181–192

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Canam T, Kang KY, Unda F, Mansfield SD (2009) Sucrose phosphate synthase expression influences poplar phenology. Tree Physiol 29:937–946

    Article  CAS  PubMed  Google Scholar 

  • Pascual MB, Jing ZP, Kirby EG, Cánovas FM, Gallardo F (2008) Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochemistry 69:382–389

    Article  CAS  PubMed  Google Scholar 

  • Paul M (2007) Trehalose 6-phosphate. Curr Opin Biol 10:303–309

    Article  CAS  Google Scholar 

  • Paul MJ, Stitt M (1993) Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant Cell Environ 16:1047–1057

    Article  CAS  Google Scholar 

  • Peng M, Bi YM, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by ubiquitin ligase gene NLA. Plant Mol Biol 65:775–797

    Article  CAS  PubMed  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahmani F, Hummel M, Schurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J (2009) Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiol 150:1356–1367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW, Irwin N, Janssen KA (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scheible WR, Gonzales-Fontes A, Lauerer M, Muller-Rober, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seabra AR, Silva LS, Carvalho HG (2013) Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol 13:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Seger M, Ortega JL, Bagga S, Gopalan CS (2009) Repercussion of mesophyll-specific overexpression of a soybean cytosolic glutamine synthetase gene in alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.). Plant Sci 176:119–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism—more than iceing on the cake. Plant J 61:1067–1091

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang J, Larue CT, Huber SC (2011) Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant Cell Environ 34:592–604

    Article  CAS  PubMed  Google Scholar 

  • Swarbreck SM, Defoin-Platel M, Hindle M, Saqi M, Habash DZ (2011) New perspectives on glutamine synthetase in grasses. J Exp Bot 62:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1; 1, a cytosolic glutamine synthetase 1;1. Plant J 42:641–651

    Article  CAS  PubMed  Google Scholar 

  • Temple SJ, Knight TJ, Unkefer PJ, Sengupta-Gopalan C (1993) Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientations: molecular and biochemical analysis. Mol Gen Genet 236:315–325

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Smeekens S, Koorneef M (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian H, Ma L, Zhao C, Hao H, Gong B, Yu X, Wang X (2010) Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochem Biophys Res Commun 393:365–370

    Article  CAS  PubMed  Google Scholar 

  • Tognetti JA, Pontis HG, Martinez-Noel GMA (2013) Sucrose signaling in plants. A world yet to be explored. Plant Signal Behav 8:e23316

    Article  PubMed Central  PubMed  Google Scholar 

  • Uhrig RG, Ng KK, Moorhead GB (2009) PII in higher plants: a modern role for an ancient protein. Trends Plant Sci 14:505–511

    Article  CAS  PubMed  Google Scholar 

  • Vincent R, Fraiser V, Chaillou S, Limami MA, Deleens E, Phillipson B, Douat C, Boutin JP, Hirel B (1997) Overexpression of a soybean gene encoding glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201:424–433

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi GR, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Worrell AC, Bruneau JM, Summerfelt K, Boersig M, Voelker TA (1991) Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 3:1121–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng ZL (2009) Carbon and nitrogen balance signaling in plants. Plant Signal Behav 4:584–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuñiga-Feest A, Ort DR, Gutierrez A, Gidekel M, Bravo LA, Corcuera L (2005) Light regulation of sucrose–phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth Res 83:75–86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agricultural Experiment Station at New Mexico State University and by the National Institutes of Health (Research Initiative for Scientific Research Enhancement Program), grant number R25GM061222. SG was supported by a scholarship from the Ministry of Higher Education, Egypt and AM is on a NSF GK-12 DISSECT Fellowship. The authors want to thank Dr. Suman Bagga for critical reading of the MS and Kayle Brook-Cirrincione, Jordan Harrison, and Darian Oldham for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Champa Sengupta-Gopalan.

Additional information

M. Seger and S. Gebril are the joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seger, M., Gebril, S., Tabilona, J. et al. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco. Planta 241, 69–81 (2015). https://doi.org/10.1007/s00425-014-2165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2165-4

Keywords

Navigation