Skip to main content
Log in

Altered sucrose metabolism impacts plant biomass production and flower development

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 × 35S::UGPase × SPS, 4CL::UGPase × SPS, 2 × 35S::SuSy × SPS, 4CL::SuSy × SPS, 2 × 35S::UGPase × SuSy × SPS, and 4CL::UGPase × SuSy × SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appeldoorn NJG, de Bruijn SM, Koot-Gronsveld EAM, Visser RGF, Vreugdenhil D, van der Plas LHW (1997) Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta 202:220–226

    Article  CAS  Google Scholar 

  • Baxter CJ, Foyer CH, Turner J, Rolfe SA, Quick WP (2003) Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J Exp Bot 54:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Borokov AY, McClean PE, Sowokinos JR, Ruud SH, Secor GA (1996) Effect of expression of UDP-glucose pyrophosphorylase ribozyme and antisense RNAs on the enzyme activity and carbohydrate composition of field-grown transgenic potato plants. J Plant Physiol 147:644–652

    Google Scholar 

  • Chourey PS (1981) Genetic control of sucrose synthetase in maize endosperm. Mol Gen Genet 184:372–376

    Article  CAS  Google Scholar 

  • Coleman HD, Ellis DD, Gilbert M, Mansfield SD (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J 4:87–101

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust M-A, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407–2418

    Article  PubMed  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  CAS  PubMed  Google Scholar 

  • Doehlert DC (1987) Substrate-inhibition of maize endosperm sucrose synthase by fructose and its interaction with glucose inhibition. Plant Sci 52:153–157

    Article  CAS  Google Scholar 

  • Galtier N, Foyer CH, Huber J, Voelker TA, Huber SC (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiol 101:535–543

    CAS  PubMed  Google Scholar 

  • Geigenberger P, Reimholz R, Deiting U, Sonnewald U, Stitt M (1999) Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant J 19:119–129

    Article  CAS  PubMed  Google Scholar 

  • Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51

    Article  CAS  PubMed  Google Scholar 

  • Hauffe KD, Paszkowski U, Schulze-Lefert P, Hahlbrock K, Dangl JL, Douglas CJ (1991) A parsley 4CL-1 promoter fragment specifies complex expression patterns in trangenic tobacco. Plant Cell 3:435–443

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  CAS  PubMed  Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H–F5H transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183

    Article  CAS  PubMed  Google Scholar 

  • Iraqi D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:2301–2311

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Ono K, Kashiwagi T (2004) Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta 218:388–395

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R (2008) Overexpression of a maize SPS gene improves yield characters of potato under field conditions. Plant Prod Sci 11:104–107

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JF, White CA (1983) Bioactive carbohydrates in chemistry biochemistry and biology. Halstead Press, New York, USA

    Google Scholar 

  • Kleczkowski LA (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37:1507–1515

    Article  CAS  Google Scholar 

  • Koch KE (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Konishi T, Ohmiya Y, Hayashi T (2004) Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various β-glucan synthases in the stem. Plant Physiol 134:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Laporte MM, Galagan JA, Prasch AL, Vanderveer PJ, Hanson DT, Shewmaker CK, Sharkey TD (2001) Promoter strength and tissue specificity effects on growth of tomato plants transformed with maize sucrose-phosphate synthase. Planta 212:817–822

    Article  CAS  PubMed  Google Scholar 

  • Levy M, Edelbaum O, Sela I (2004) Tobacco mosaic virus regulates the expression of its own resistance gene N1. Plant Physiol 135:2392–2397

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, MacRae EA (2003) New complexities in the synthesis of sucrose. Curr Opin Plant Biol 6:208–214

    Article  CAS  PubMed  Google Scholar 

  • Magel E, Abdel-Latif A, Hampp R (2001) Non-structural carbohydrates and catalytic activities of sucrose metabolizing enzymes in trunks of two Juglans species and their role in heartwood formation. Holzforshung 55:135–145

    Article  CAS  Google Scholar 

  • McDaniel CN (1992) Determination to flower in Nicotiana. In: Pederson RA (ed) Current topics in developmental biology. Academic Press, New York, pp 1–37

    Google Scholar 

  • McDaniel CN, Hartnett LK, Sangrey KA (1996) Regulation of node number in day-neutral Nicotiana tabacum: a factor in plant size. Plant J 9:55–61

    Article  Google Scholar 

  • Meng M, Geisler M, Johansson H et al (2009) UDP-glucose pyrophosphorylase is not rate-limiting, but is essential in Arabidopsis. Plant Cell Physiol Early Online

  • Micallef BJ, Haskins KA, Vanderveer PJ, Roh K-S, Shewmaker CK, Sharkey TD (1995) Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196:327–334

    Article  CAS  Google Scholar 

  • Park J-Y, Canam T, Kang KY, Unda F, Mansfield SD (2009) Sucrose phosphate synthase (SPS) expression influences phenology in poplar. Tree Physiol 29:937–946

    Article  CAS  PubMed  Google Scholar 

  • Park J-Y, Canam T, Kang KY, Ellis DD, Mansfield SD (2008) Overexpression of an arabidopsis family a sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res 17:181–192

    Article  CAS  PubMed  Google Scholar 

  • Persia D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618

    Article  CAS  PubMed  Google Scholar 

  • Salnikov VV, Grimson MJ, Delmer DP, Haigler CH (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry 57:823–833

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Wilke I, Feil R, Heldt HW (1988) Coarse control of sucrose phosphate synthase in leaves: alterations of the kinetic properties in response to the rate of photosynthesis and the accumulation of sucrose. Planta 174:217–230

    Article  CAS  Google Scholar 

  • Strand A, Zrenner R, Trevanion S, Stitt M, Gustafsson P, Gardestrom P (2000) Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1, 6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J 23:759–770

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Loboda T, Sung S-JS, Black CCJ (1992) Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol 98:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Tang GQ, Sturm A (1999) Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol 41:465–479

    Article  CAS  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Schoffl F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54:2343–2349

    Article  CAS  PubMed  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. Cabi International, Oxford, UK

    Book  Google Scholar 

  • Woo MO, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS, Jwa NS, McCouch S, Koh HE (2008) Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54:190–204

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Thomas Canam, Tony Einfeldt and Jimmy Yan for their technical assistance. Funding for this project was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) to SDM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn D. Mansfield.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, H.D., Beamish, L., Reid, A. et al. Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Res 19, 269–283 (2010). https://doi.org/10.1007/s11248-009-9309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9309-5

Keywords

Navigation