Skip to main content
Log in

Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Ghany SE, Day IS, Simmons MP, Kugrens P, Reddy ASN (2005) Origin and evolution of kinesin-like calmodulin-binding protein. Plant Physiol 138:1711–1722

    Article  PubMed  CAS  Google Scholar 

  • Anderhag P, Hepler PK, Lazzaro MD (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214:141–157

    Article  Google Scholar 

  • Åström H, Sorri O, Raudaskoski M (1995) Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex Plant Reprod 8:61–69

    Article  Google Scholar 

  • Bowser J, Reddy ASN (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12:1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Teng NJ, Wu XQ, Wang YH, Tang W, Samaj J, Baluska F, Lin JX (2007) Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant Cell Physiol 48:19–30

    Article  PubMed  CAS  Google Scholar 

  • Chen KM, Wu GL, Wang YH, Tian CT, Samaj J, Baluska F, Lin JX (2008) The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. Protoplasma 233:39–49

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Wu XQ, Chen YM, Li XJ, Huang M, Zheng MZ, Baluska F, Samaj J, Lin JX (2009) Combined proteomic and cytological analysis of Ca2+/calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol 149:1111–1126

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Duan QH, Costa SS, deGraaf BHJ, DiStilio VS, Feijó J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702

    Article  PubMed  CAS  Google Scholar 

  • Dawkins MD, Owens JN (1993) In vitro and in vivo pollen hydration, germination, and pollen tube growth in white spruce, Picea glauca (Moench) Voss. Int J Plant Sc 154:506–521

    Article  Google Scholar 

  • de Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP, Derksen J (1996) Development and cellular organization of Pinus sylvestris pollen tubes. Sex Plant Reprod 9:93–101

    Article  Google Scholar 

  • Deavours BE, Reddy ASN, Walker RA (1998) Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. Cell Motil Cytoskelet 40:408–416

    Article  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Dymek EE, Goduti D, Kramer T, Smith EF (2006) A kinesin-like calmodulin-binding protein in Chlamydomonas: evidence for a role in cell division and flagellar functions. J Cell Sci 119:3107–3116

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA 91:8837–8841

    Article  PubMed  CAS  Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth dependent acidic tip. J Cell Biol 144:483–496

    Article  PubMed  Google Scholar 

  • Foissner I, Grolig F, Obermeyer G (2002) Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid. Protoplasma 220:1–15

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Klotz J, Nick P (2009) Dynamic bridges- a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104:14531–14536

    Article  PubMed  CAS  Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–2363

    PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy ASN (2003) A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci USA 100:10558–10563

    Article  PubMed  CAS  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wetzstein HY (1995) Fixation induces differential tip morphology and immunolocalization of the cytoskeleton in pollen tubes. Physiol Plant 93:757–763

    Article  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1989) Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94:319–325

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60

    Google Scholar 

  • Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    PubMed  CAS  Google Scholar 

  • Justus CD, Anderhag P, Goins JL, Lazzaro MD (2004) Microtubules and microfilaments coordinate to direct a fountain-streaming pattern in elongating conifer pollen tube tips. Planta 219:103–109

    Article  PubMed  CAS  Google Scholar 

  • Kadota A, Wada M (1992) Reorganization of the cortical cytoskeleton in tip growing fern protonemal cells during phytochrome mediated phototropism and blue light induced apical swelling. Protoplasma 166:35–41

    Article  Google Scholar 

  • Kao YL, Deavours BE, Phelps KK, Walker RA, Reddy ASN (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/calmodulin. Biochem Biophys Res Commun 267:201–207

    Article  PubMed  CAS  Google Scholar 

  • Krishnakumar S, Oppenheimer DG (1999) Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation and pollen tube growth. Development 126:3079–3088

    PubMed  CAS  Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167:215–230

    Article  Google Scholar 

  • Lazzaro MD (1996) The actin microfilament network within elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194:186–194

    Article  CAS  Google Scholar 

  • Lazzaro MD (1999) Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae). Amer J Bot 86:759–766

    Article  CAS  Google Scholar 

  • Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, Phillips MS, Holdaway-Clarke TL, Hepler PK (2005) Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. J Exp Bot 56:2619–2628

    Article  PubMed  CAS  Google Scholar 

  • Lovy-Wheeler A, Wilson KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  PubMed  CAS  Google Scholar 

  • Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells of Ceratodon purpureas. Protoplasma 192:189–198

    Article  Google Scholar 

  • Messerli MA, Danhuser G, Robinson KR (1999) Pulsatile influxes of H+, K+, and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 12:1497–1509

    Google Scholar 

  • Narasimhulu SB, Reddy ASN (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin like calmodulin binding protein. Plant Cell 10:957–965

    PubMed  CAS  Google Scholar 

  • Narasimhulu SB, Kao YL, Reddy ASN (1997) Interaction of Arabidopsis kinesin-like calmodulin binding protein with tubulin subunits: modulation by Ca2+/calmodulin. Plant J 12:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Obermeyer G, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56:319–327

    PubMed  CAS  Google Scholar 

  • Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695

    PubMed  CAS  Google Scholar 

  • Pierson ES, Derksen J, Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro and in vivo in various angiosperms. Eur J Cell Biol 41:14–18

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  PubMed  CAS  Google Scholar 

  • Poulter NS, Vatovec S, Franklin-Tong VE (2008) Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol 146:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Pressel S, Ligrone R, Duckett JG (2008) Cellular differentiation in moss protonemata: a morphological and experimental study. Ann Bot 102:227–245

    Article  PubMed  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–160

    Article  PubMed  CAS  Google Scholar 

  • Preuss ML, Kovar DR, Lee YRJ, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    Article  PubMed  CAS  Google Scholar 

  • Rato C, Monteiro D, Hepler PK, Malhó R (2004) Calmodulin activity and cAMP signaling modulate growth and apical secretion in pollen tubes. Plant J 38:887–897

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli S, Faleri C, Bini L, Baskin TI, Cresti M (2010) Cytosolic proteins from tobacco pollen tubes that crosslink microtubules and actin filaments in vitro are metabolic enzymes. Cytoskeleton 67:745–754

    Article  PubMed  CAS  Google Scholar 

  • Runions CJ, Owens JN (1999) Sexual reproduction of interior spruce (Pinaceae). II. Fertilization to early embryo formation. Int J Plant Sci 160:641–652

    Article  Google Scholar 

  • Safadi F, Reddy VS, Reddy ASN (2000) A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats. J Biol Chem 275:35457–35470

    Article  PubMed  CAS  Google Scholar 

  • Schiøtt M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  PubMed  Google Scholar 

  • Schwuchow J, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonema of the moss Ceratodon. Protoplasma 159:60–69

    Article  PubMed  CAS  Google Scholar 

  • Shi K, Li J, Han K, Jiang H, Xue L (2013) The degradation of kinesin-like calmodulin binding protein of D. Salina (DsKCBP) is mediated by the ubiquitin-proteasome system. Mol Biol Rep 40:3113–3121

    Article  PubMed  CAS  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. In: Handbuch der Pflanzenanatomie. vol 10, Gebrüder Borntraeger, Berlin, p 2

  • Smirnova EA, Reddy ASN, Bowser J, Bajer AS (1998) Minus end-directed kinesin-like motor protein, KCBP, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskelet 41:271–280

    Article  CAS  Google Scholar 

  • Song H, Golovkin M, Reddy ASN, Endow SA (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci USA 94:322–327

    Article  PubMed  CAS  Google Scholar 

  • Terasaka O, Niitsu T (1994) Differential roles of microtubule and actin-myosin cytoskeleton in the growth of Pinus pollen tubes. Sex Plant Reprod 7:264–272

    Article  Google Scholar 

  • Umezu N, Umeki N, Mitsui T, Kondo K, Maruta S (2011) Characterization of a novel rice kinesin O12 with a calponin homology domain. J Biochem 149:91–101

    Article  PubMed  CAS  Google Scholar 

  • Vos JW, Safadi F, Reddy ASN, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12:979–990

    PubMed  CAS  Google Scholar 

  • Wang X, Teng Y, Wang Q, Li X, Sheng X, Zheng M, Samaj J, Baluska F, Lin J (2006) Imaging dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421:171–180

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14:S375–S388

    PubMed  CAS  Google Scholar 

  • Zheng MZ, Wang QL, Teng Y, Wang XH, Wang F, Chen T, Samaj J, Lin JX, Logan DC (2010) The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta 231:779–791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the College of Charleston through grants to M.D.L. from the Department of Biology, the Office of Research and Creative Activities, and the Faculty Research and Development Committee. E.Y.M. conducted part of this research as an undergraduate. We thank Robyn L. Overall at the University of Sydney for graciously providing bench space and lab support for M.D.L. Videos accompanying Figs. 1 and 4 are available at our lab website (http://lazzarom.people.cofc.edu) and as online resources at the journal website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Lazzaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 40563 kb)

Supplementary material 2 (MOV 8737 kb)

Supplementary material 3 (MOV 22314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzaro, M.D., Marom, E.Y. & Reddy, A.S.N. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin. Planta 238, 587–597 (2013). https://doi.org/10.1007/s00425-013-1919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1919-8

Keywords

Navigation