Skip to main content
Log in

Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 μM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g−1 DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Net carbon assimilation rate

BP:

Basal part of the plant

E :

Instantaneous transpiration

F 0 :

Minimal fluorescence level

F m :

Maximal fluorescence level

FP:

Mean number of flowers per plant

g s :

Stomatal conductance

LA-ICP-MS:

Laser ablation-inductively coupled plasma-mass spectrometry

LN:

Number of leaves

LR:

Mean length of the ramifications

MDA:

Malondialdehyde

NR:

Number of ramifications

NFT:

Nutrient film technique

NPQ:

Non-photochemical quenching

PSII:

Photosystem II

qP:

Photochemical quenching coefficient

SL:

Mean length of the main stem

UP:

Upper part of the plant

ΦPSII:

Actual PSII efficiency

Ψ w :

Leaf water potential

Ψ s :

Osmotic potential

WC:

Water content

References

  • Brüx A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumaker K (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyls growth inhibition in Arabidopsis. Plant Cell 14:1347–1357

    Google Scholar 

  • Callender E, Rice KC (2000) The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ Sci Technol 34:232–238

    Article  CAS  Google Scholar 

  • Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012) Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86:867–874

    Article  PubMed  Google Scholar 

  • Comino E, Whiting SN, Neumann PM, Baker AJM (2005) Salt (NaCl) tolerance in the Ni hyperaccumulator Alyssum murale and the Zn hyperaccumulator Thlaspi caerulescens. Plant Soil 270:91–99

    Article  CAS  Google Scholar 

  • Dafni A, Firmage D (2000) Pollen viability and longevity. Plant Syst Evol 222:113–132

    Article  Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest, Cambridge. p 590

    Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubatus. Plant Physiol 98:853–858

    Article  PubMed  Google Scholar 

  • Ernst WHO, Nelissen HJM (2000) Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environ Poll 107:329–338

    Article  CAS  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893–1907

    Article  PubMed  CAS  Google Scholar 

  • Ghanem ME, Han RM, Classen B, Mahy G, Quetin-Leclerq J, Ruan CJ, Qin P, Pérez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  • Gholap DS, Izmer A, De Samber B, van Elteren JT, ŠeSchamphelaere K, Janssen C, Balcaen L, Lindemann I, Vincze L, Vanhaecke F (2010) Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna. Anal Chim Acta 664:19–26

    Article  PubMed  CAS  Google Scholar 

  • Han RM (2013) Sodium chloride improves heavy metal tolerance in the halophyte Kosteletzkya virginica independently of growth stimulation. PhD Thesis, Université catholique de Louvain, Belgium, p 310

  • Han RM, Lefèvre I, Ruan CJ, Qin P, Lutts S (2012a) NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul 68:97–109

    Article  CAS  Google Scholar 

  • Han RM, Lefèvre I, Ruan CJ, Beukelaers N, Qin P, Lutts S (2012b) Effects of salinity on the response of the wetland halophyte Kosteletzkya virginica (L.) Presl. to copper toxicity. Water Air Soil Poll 223:1137–1150

    Article  CAS  Google Scholar 

  • Han RM, Lefèvre I, Albacete A, Pérez-Alfocea FP, Barba-Espín G, Díaz-Vivancos P, Quinet M, Ruan CJ, Hernández JA, Cantero-Navarro E, Lutts S (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica (L.) Presl. under saline conditions. Physiol Plant 147:352–368

    Article  PubMed  CAS  Google Scholar 

  • He ZX, Ruan CJ, Qin P, Seliskar DM, Gallagher JL (2003) Kosteletzkya virginica, a halophytic species with potential for agrotechnology in Jiangsu Province, China. Ecol Eng 21:271–276

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Kholodova VP, Volkov KS, Kuznetson KLK (2005) Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russ J Plant Physiol 52:848–858

    Article  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009a) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  Google Scholar 

  • Lefèvre I, Marchal G, Corréal E, Zanuzzi A, Lutts S (2009b) Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul 59:1–11

    Article  Google Scholar 

  • Lefèvre I, Corréal E, Lutts S (2010) Impact of cadmium and zinc on growth and water status of Zygophyllum fabago issued from two contrasting metallicolous populations from the SE Spain: comparison at the whole plant and tissue levels. Plant Biol 12:883–894

    Article  PubMed  Google Scholar 

  • Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004) A syntaxin 1, Gαo, and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070–4081

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin W, Xiao T, Wu Y, Ao Z, Ning Z (2012) Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. Chemosphere 86:837–842

    Article  PubMed  CAS  Google Scholar 

  • López-Chucken UJ, Young SD (2005) Plant screening of halophyte species for cadmium phytoremediation. Zeitsch Naturforg 60:236–243

    Google Scholar 

  • Lutts S, Bouharmont J, Kinet JM (1999) Physiological characterization of salt-resistant rice (Oryza sativa L.) somaclones. Aust J Bot 47:835–849

    Article  Google Scholar 

  • Lutts S, Lefèvre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 3:1271–1279

    Article  Google Scholar 

  • Mahon S, Carman KR (2008) The influence of salinity on the uptake, distribution, and excretion of metals by the smooth cordgrass, Spartina alterniflora (Loisel.), grown in sediment contaminated by multiple metals. Estuaries Coasts 31:1089–1097

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E, Redonodo-Gómez S, Cambrollé J, Luque T, Fugeroa ME (2008) Growth and photosynthetic responses to zinc stress of an invasive cordgrass Spartina densiflora. Plant Biol 10:754–762

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • McFarlane GR, Burchett M (1999) Zinc distribution and excretion in the leaves of the grey mangrove, Avicenia marina (Forsk.) Vierh. Environ Exp Bot 41:167–175

    Article  Google Scholar 

  • Mesjasz-Przybylowicz J, Grodzińska K, Przybylowicz WJ, Godzik B, Szarek-Lukaszewska G (1999) Micro-PIXE studies of elemental distribution in seeds of Silene vulgaris from a zinc dump in Olkusz, southern Poland. Nucl Instr Meth Phys Res B158:306–311

    Article  Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of the D1 protein during photo inhibition of Synechococus sp. PCC7942. Plant Physiol 141:758–765

    Article  PubMed  CAS  Google Scholar 

  • Otte ML, Bestebroer SJ, van der Linden JM, Rozema J, Broekman RA (1991) A survey of zinc, copper and cadmium concentrations in salt marsh plants along the Dutch coast. Environ Poll 72:175–189

    Article  CAS  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    Article  CAS  Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Intern J Phytorem 10:133–160

    Article  CAS  Google Scholar 

  • Reck B, Bertram M, Müller DB, Graedel TE (2006) Multilevel anthropogenic cycles of copper and zinc: a comparative statistical analysis. J Ind Ecol 10:89–110

    Article  CAS  Google Scholar 

  • Redondo-Gómez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R, Valera-Burgos J, Aroca R (2011) Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora. J Exp Bot 62:5521–5530

    Article  PubMed  Google Scholar 

  • Ruan CJ, Li H, Guo YQ, Qin P, Gallagher JL, Seliskar DM, S Lutts, Mahy G (2008) Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agriculture production in China’s east coast: ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties. Ecol Eng 32:320–328

    Article  Google Scholar 

  • Ruan CJ, Teixeia da Silva JA, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  CAS  Google Scholar 

  • Ruan CJ, Xing WH, Teixeira da Silva JA (2012) Potential of five plants growing on unproductive agricultural lands as biodiesel resources. Renew Energy 41:191–199

    Article  CAS  Google Scholar 

  • Sáinz A, Grande JA, De la Torre ML, Sánchez-Rodas D (2002) Characterisation of sequential leachate discharge of mining waste rock dumps in the Tinto and Odiel rivers. J Environ Manag 64:345–353

    Article  Google Scholar 

  • Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333–1347

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sci 171:286–294

    Article  CAS  Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to zinc stress. Chemosphere 59:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Simčič J, Pelicon J, Budnar M, Povh B, Regvar M (2007) Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Poll 147:50–59

    Article  Google Scholar 

  • Wang YX, Specht A, Horst WJ (2011) Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol 189:428–437

    Article  PubMed  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:687–700

    Article  Google Scholar 

  • Whiting SN, Neumann PM, Baker AJM (2003) Nickel and zinc hyperaccumulation by Alyssum murale and Thlaspi caerulescence (Brassicaceae) do not enhance survival and whole-plant growth under drought stress. Plant, Cell Environ 26:351–360

    Article  CAS  Google Scholar 

  • Wirth J, Poletti S, Aeshlimann B, Yakandawala B, Drosse B, Osorio S, Tohge T, Fernie AR, Günther D, Gruissem W et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotech J 7:631–644

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Belgian Science Policy (BELSPO): Chinese-Belgian Cooperation Project [200441505], by the Fonds National de la Recherche Scientifique (Crédit aux Chercheurs—Conventions no 1.5.111.10F, 1.5117.11), and by Wallonie-Bruxelles-International (Convention mixte: WBI—République de Slovénie). R.-M. Han is grateful to the Université catholique de Louvain (UCL) for the award of a research fellowship. The authors are grateful to Mr B. Capelle and Mrs B. Van Pee for their precious technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Lutts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 960 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, R., Quinet, M., André, E. et al. Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity. Planta 238, 441–457 (2013). https://doi.org/10.1007/s00425-013-1903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1903-3

Keywords

Navigation