Skip to main content
Log in

The amount and integrity of mtDNA in maize decline with development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

DIG:

Digoxigenin

EtBr:

Ethidium bromide

FI:

Fluorescence intensity

MeI:

Methylation-insensitive

MeS:

Methylation-sensitive

mtDNA:

Mitochondrial DNA

nucDNA:

Nuclear DNA

ptDNA:

Plastid DNA

ttDNA:

Total tissue DNA

NUMTs:

Nuclear sequences of mitochondrial origin

NUPTs:

Nuclear sequences of plastid origin

PFGE:

Pulsed-field gel electrophoresis

ROS:

Reactive oxygen species

References

  • Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Scott NS, Timmis JN (1998) Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol 15:738–745

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Börner T (2000) Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.). Curr Genet 37:304–314

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Dörfel P, Börner T (1995) Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet 28:390–399

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Lurz R, Börner T (1996) Electron microscopic investigation of mitochondrial DNA from Chenopodium album (L.). Nucl Acids Res 25:582–589

    Article  Google Scholar 

  • Backert S, Nielsen BL, Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2:477–483

    Article  Google Scholar 

  • Balk J, Pilon M (2011) Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci 16:218–226

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34:573–583

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279–282

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (1996) Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J Mol Biol 255:564–588

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ, Guariloff LP (1984) Morphometric analysis of cucurbit mitochondria: the relationship between chondriome volume and DNA content. Protoplasma 199:107

    Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ, Lanteri S, Verhoeven HA, Kraak HL (1993) Flow cytometric determination of nuclear replication stages in seed tissues. Ann Bot 72:181–187

    Article  Google Scholar 

  • Bowsher CG, Tobin AK (2001) Compartmentation of metabolism within mitochondria and plastids. J Exp Bot 52:513–527

    Article  PubMed  CAS  Google Scholar 

  • Braschi E, McBride HM (2010) Mitochondria and the culture of the Borg: understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. BioEssays 32:958–966

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  PubMed  CAS  Google Scholar 

  • Cahoon AB, Cunningham KA, Bollenbach TJ, Stern DB (2003) Maize BMS cultured cell lines survive with massive plastid gene loss. Curr Genet 44:104–113

    Article  PubMed  CAS  Google Scholar 

  • Cankar K, Stebih D, Dreo T, Zel J, Gruden K (2006) Critical points of DNA quantification by real-time PCR—effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol 6:37

    Article  PubMed  Google Scholar 

  • Carling PJ, Cree LM, Chinnery PF (2011) The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 11:686–692

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195:32–39

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Ku M, Edwards GE (1995) C4 Photosynthesis (the effects of leaf development on the CO2-concentrating mechanism and photorespiration in maize). Plant Physiol 107:815–825

    PubMed  CAS  Google Scholar 

  • Dai H, Lo YS, Litvinchuk A, Wang YT, Jane WN, Hsiao LJ, Chiang KS (2005) Structural and functional characterizations of mung bean mitochondrial nucleoids. Nucl Acids Res 33:4725–4739

    Article  PubMed  CAS  Google Scholar 

  • Elo A, Lyznik A, Gonzalez DO, Kachman SD, Mackenzie SA (2003) Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome. Plant Cell 15:1619–1631

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    Article  PubMed  CAS  Google Scholar 

  • Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  PubMed  CAS  Google Scholar 

  • Fujie M, Kuroiwa H, Kawano S, Kuroiwa T (1993) Studies on the behavior of organelles and their nucleoids in the root apical meristem of Arabidopsis thaliana (L.) Col. Planta 189:443–452

    Article  Google Scholar 

  • Fujie M, Kuroiwa H, Kawano S, Mutoh S, Kuroiwa T (1994) Behavior of organelles and their nucleoids in the shoot apical meristem during leaf development in Arabidopsis thaliana L. Planta 194:395–405

    Article  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (2011) The incredible shrinking organelle. EMBO Rep 12:873

    Article  PubMed  CAS  Google Scholar 

  • Griffiths LM, Swartzlander D, Meadows KL, Wilkinson KD, Corbett AH, Doetsch PW (2009) Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress. Mol Cell Biol 29:794–807

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261–265

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    Article  PubMed  Google Scholar 

  • Huang CY, Grunheit N, Ahmadinejad N, Timmis JN, Martin W (2005) Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiol 138:1723–1733

    Article  PubMed  CAS  Google Scholar 

  • Hunt S (2003) Measurements of photosynthesis and respiration in plants. Physiol Plant 117:314–325

    Article  PubMed  CAS  Google Scholar 

  • Jacqmard A, De Veylder L, Segers G, de Almeida Engler J, Bernier G, Van Montagu M, Inze D (1999) Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta 207:496–504

    Article  PubMed  CAS  Google Scholar 

  • Jasbeer K, Son R, Mohamad Ghazali F, Cheah YK (2009) Real-time PCR evaluation of seven DNA extraction methods for the purpose of GMO analysis. Int Food Res J 16:329–341

    Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138

    Article  PubMed  CAS  Google Scholar 

  • Kumar RA, Bendich AJ (2011) Distinguishing authentic mitochondrial and plastid DNAs from similar DNA sequences in the nucleus using the polymerase chain reaction. Curr Genet 57:287–295

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Fujie M, Kuroiwa H (1992) Studies on the behavior of mitochondrial DNA: synthesis of mitochondrial DNA occurs actively in a specific region just above the quiescent center in the root meristem of Pelargonium zonale. J Cell Sci 101:483–493

    CAS  Google Scholar 

  • Lo YS, Hsiao LJ, Cheng N, Litvinchuk A, Dai H (2011) Characterization of the structure and DNA complexity of mung bean mitochondrial nucleoids. Mol Cell 31:217–224

    Article  CAS  Google Scholar 

  • Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron CM (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucl Acids Res 12:9249–9261

    Article  PubMed  CAS  Google Scholar 

  • Lough AN, Roark LM, Kato A, Ream TS, Lamb JC, Birchler JA, Newton KJ (2008) Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize. Genetics 178:47–55

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi JC (1973) Dosage compensation in Drosophila. Annu Rev Genet 7:225–237

    Article  PubMed  CAS  Google Scholar 

  • Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256

    Article  PubMed  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    Article  PubMed  CAS  Google Scholar 

  • Miller-Messmer M, Kuhn K, Bichara M, Le Ret M, Imbault P, Gualberto JM (2012) RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome. Plant Physiol 159:211–226

    Article  PubMed  CAS  Google Scholar 

  • Miyamura S, Nagata T, Kuroiwa T (1986) Quantitative fluorescence microscopy on dynamic changes of plastid nucleoids during wheat development. Protoplasma 133:66–72

    Article  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura T, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Complete nucleotide sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. Plant Mol Biol Report 10:105–163

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (1996) Size and structure of replicating mitochondrial DNA in cultured tobacco cells. Plant Cell 8:447–461

    PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (1998) The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha. J Mol Biol 276:745–758

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344:1311–1330

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Rowan BA, Zhao L, Walcher CL, Schleh M, Bendich AJ (2006) Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225:41–55

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1986) Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucl Acids Res 14:9755–9764

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Schneider A, Kleine T, Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606

    Article  PubMed  CAS  Google Scholar 

  • Poulton J, Chiaratti MR, Meirelles FV, Kennedy S, Wells D, Holt IJ (2010) Transmission of mitochondrial DNA diseases and ways to prevent them. PLoS Genet 6:1–6

    Google Scholar 

  • Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Börner T (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J 64:948–959

    Article  PubMed  CAS  Google Scholar 

  • Quesada V, Sarmiento-Manus R, Gonzalez-Bayon R, Hricova A, Perez-Marcos R, Gracia-Martinez E, Medina-Ruiz L, Leyva-Diaz E, Ponce MR, Micol JL (2011) Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant J 68:738–753

    Article  PubMed  CAS  Google Scholar 

  • Ravi V, Khurana JP, Tuagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122

    Article  CAS  Google Scholar 

  • Ribas-Carbo M, Flexas J, Robinson SA, Tcherkez GGB (2010) In vivo measurement of plant respiration. In: Taiz L, Zeiger E (eds) A companion to plant physiology, 5th edn. Web essay 11.19. http://ro.uow.edu.au/scipapers/437

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    Article  PubMed  CAS  Google Scholar 

  • Roark LM, Hui AY, Donnelly L, Birchler JA, Newton KJ (2010) Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Gen Res 129:17–23

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoot RA (eds) Plant Molecular Biology Manual, Kluwer Academic Publishers, Boston, vol A6, p 1–10

  • Roussell DL, Thompson DL, Pallardy SG, Miles D, Newton KJ (1991) Chloroplast structure and function is altered in the NCS2 maize mitochondrial mutant. Plant Physiol 96:232–238

    Article  PubMed  CAS  Google Scholar 

  • Rowan BA, Oldenburg DJ, Bendich AJ (2009) A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis. BMC Plant Biol 9:3

    Article  PubMed  Google Scholar 

  • Sakamoto W, Miyagishima SY, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arabidopsis Book 6:e0110

    PubMed  Google Scholar 

  • Segui-Simarro JM, Coronado MJ, Staehelin LA (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol 148:1380–1393

    Article  PubMed  CAS  Google Scholar 

  • Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    Article  PubMed  CAS  Google Scholar 

  • Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucl Acids Res 37:2539–2548

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Crosby K, Lee RW (2011) Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol 3:365–371

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD (1986) Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nucl Acids Res 14:5651–5666

    Article  PubMed  CAS  Google Scholar 

  • Tahbaz N, Subedi S, Weinfeld M (2012) Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucl Acids Res 40:3484–3495

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Onoue K, Kawano S (2010) Mitochondrial fusion and inheritance of the mitochondrial genome. J Plant Res 123:131–138

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Toshoji H, Katsumata T, Takusagawa M, Yusa Y, Sakai A (2012) Effects of chloroplast dysfunction on mitochondria: white sectors in variegated leaves have higher mitochondrial DNA levels and lower dark respiration rates than green sectors. Protoplasma 249:805–817

    Article  PubMed  CAS  Google Scholar 

  • Vinod KK (2004) Total genomic DNA extraction, quality check and quantitation. In: Proceedings of the training programme on classical and modern plant breeding techniques—a hands on training. Tamil Nadu Agricultural University, Coimbatore, India, pp 109–121

  • Williams BP, Aubry S, Hibberd JM (2012) Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci 17:213–220

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes—though this be madness, yet there’s method in’t. J Exp Bot 61:657–671

    Article  PubMed  CAS  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Terashima I, Noguchi K (2011) How and why does mitochondrial respiratory chain respond to light? Plant Signal Behav 6:864–866

    Article  PubMed  CAS  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Oldenburg DJ, Bendich AJ (2011) Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species. J Exp Bot 62:2715–2730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the United States Department of Agriculture, awards 2002-35318-12384 and 2008-39211-19557. The authors thank Yunqi Lu, Jeffery Dines, and Kathryn Bofferding for their assistance on this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. Bendich.

Additional information

A contribution to the Special Issue on Evolution and Biogenesis of Chloroplasts and Mitochondria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldenburg, D.J., Kumar, R.A. & Bendich, A.J. The amount and integrity of mtDNA in maize decline with development. Planta 237, 603–617 (2013). https://doi.org/10.1007/s00425-012-1802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1802-z

Keywords

Navigation