Skip to main content
Log in

Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Genetic studies have shown the effects of various photoreceptors on early photomorphogenic processes, defining the precise time course of red (RL), far-red (FrL) and blue light (BL) action. In this study, the effect of green wavebands in conjunction with these responses is examined. Longer-term (end point; 24–96 h) analysis of hypocotyl elongation in enriched green environments shows an increase in growth compared to seedlings under blue, red or both together. The effect was only observed at lower fluence rates (<10 μmol/m2 s). Genetic analyses demonstrate that cryptochromes are required for this GL effect, consistent with earlier findings, and that the phy receptors have no influence. However, analysis of early (minutes to hours) stem growth kinetics indicates that GL cannot reverse the cryptochrome-mediated BL effect during early stem growth inhibition, and instead acts additively with BL to drive cryptochrome-mediated inhibition. Green light (GL) treatments antagonize RL and FrL-mediated hypocotyl inhibition. The GL opposition of RL responses persists in phyA, phyB, cry1cry2 and phot2 mutants. The response requires phot1 and NPH3, suggesting that this is not a GL response, but instead a response to extremely low-fluence rate BL. Tests with dim BL (<0.1 μmol/m2 s) confirm a previously uncharacterized phot1-dependent promotion of stem growth, opposing the effects of RL. These findings demonstrate how enriched green environments may adjust RL and BL photomorphogenic responses through both the crys and phot1 receptors, and define a new role for phot1 in stem growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129:774–785

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Schleicher E, Meier S, Munoz Viana R, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282:14916–14922

    Article  PubMed  CAS  Google Scholar 

  • Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue-light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J (2012) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Dhingra A, Bies DH, Lehner KR, Folta KM (2006) Green light adjusts the plastid transcriptome during early photomorphogenic development. Plant Physiol 142:1256–1266

    Article  PubMed  CAS  Google Scholar 

  • Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol 135:1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding EP (2001a) Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. Plant J 28:333–340

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding EP (2001b) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26:471–478

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Leig EJ, Durham T, Spalding EP (2003) Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Frechilla S, Talbott LD, Bogomolni RA, Zeiger E (2000) Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol 41:171–176

    Article  PubMed  CAS  Google Scholar 

  • Goggin DE, Steadman KJ, Powles SB (2008) Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds. New Phytol 180:81–89

    Article  PubMed  Google Scholar 

  • Goto N, Yamamoto KT, Watanabe M (1993) Action spectra for inhibition of hypocotyl growth of wild-type plants and of the Hy2 long-hypocotyl mutant of Arabidopsis thaliana L. Photochem Photobiol 57:867–871

    Article  Google Scholar 

  • Han I-S, Tseng T-S, Eisinger W, Briggs WR (2008) Phytochrome A regulates the intracellular distribution of phototropin 1-green fluorescent protein in Arabidopsis thaliana. Plant Cell 20:2835–2847

    Google Scholar 

  • Kami C, Lorrain Sv, Hornitschek P, Fankhauser C, Marja CPT (2010) Chapter two—light-regulated plant growth and development. Current Topics in Developmental Biology. Academic Press, pp 29–66

  • Kennis JT, Crosson S, Gauden M, van Stokkum IH, Moffat K, van Grondelle R (2003) Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry 42:3385–3392

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118:27–35

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Spalding EP (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci USA 96:14142–14146

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Folta KM, Spalding EP (2001) Photocontrol of stem growth. Curr Opin Plant Biol 4:436–440

    Article  PubMed  CAS  Google Scholar 

  • Sehringer B, Zahradnik HP, Deppert WR, Simon M, Noethling C, Schaefer WR (2005) Evaluation of different strategies for real-time RT-PCR expression analysis of corticotropin-releasing hormone and related proteins in human gestational tissues. Anal Bioanal Chem 383:768–775

    Article  PubMed  CAS  Google Scholar 

  • Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ (2010) Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol 154:401–409

    Article  PubMed  CAS  Google Scholar 

  • Spalding EP, Folta KM (2005) Illuminating topics in plant photobiology. Plant Cell Environ 28:39–53

    Article  CAS  Google Scholar 

  • Takemiya A, Inoue S-i, Doi M, Kinoshita T, Shimazaki K-i (2005) Phototropins promote plant growth in response to blue light in low light environments. The Plant Cell Online 17:1120–1127

    Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. P Natl Acad Sci USA 98:9437–9442

    Google Scholar 

  • Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38:725–739

    Google Scholar 

  • Vandenbussche F, Verbelen J-P, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Uilecan IV, Assadi AH, Kozmik CA, Spalding EP (2009) HYPOTrace: image analysis software for measuring hypocotyl growth and shape demonstrated on Arabidopsis seedlings undergoing photomorphogenesis. Plant Physiol 149:1632–1637

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Spalding EP (2007) Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Nat Acad Sci 104:18813–18818

    Article  PubMed  CAS  Google Scholar 

  • Yang Y-J, Zuo Z-C, Zhao X-Y, Li X, Klejnot J, Li Y, Chen P, Liang S-P, Yu X-H, Liu X-M, Lin C-T (2008) Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant 1:167–177

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Liscum E, Hangarter RP (1992) Spectral-dependence of light-inhibited hypocotyl elongation in photomorphogenic mutants of Arabidopsis—evidence for a UV-a photosensor. Planta 188:106–114

    Article  CAS  Google Scholar 

  • Zhang T, Maruhnich SA, Folta KM (2011) Green light induces shade avoidance symptoms. Plant Physiol 157:1528–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mannie Liscum for supplying nph3 mutant seeds. This work was supported by the funding from the National Science Foundation Grant # IOS-0746756 (KMF) and a rotation fellowship from the UF Graduate Program in Plant Molecular and Cellular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Folta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Maruhnich, S.A., Mageroy, M.H. et al. Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths. Planta 237, 225–237 (2013). https://doi.org/10.1007/s00425-012-1767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1767-y

Keywords

Navigation