Skip to main content
Log in

Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 25 May 2012

Abstract

β-Carotene ketolase (BKT) catalyzes the rate-limiting steps for the biosynthesis of astaxanthin. Several bkt genes have been isolated and explored to modify plant carotenoids to astaxanthin with limited success. In this study, five algal BKT cDNAs were isolated and characterized for the engineering of high-yield astaxanthin in plants. The products of the cDNAs showed high similarity in sequence and enzymatic activity of converting β-carotene into canthaxanthin. However, the enzymes exhibited extremely different activities in converting zeaxanthin into astaxanthin. Chlamydomonas reinhardtii BKT showed the highest conversion rate (ca 85 %), whereas, Neochloris wimmeri BKT exhibited very poor activity of ketolating zeaxanthin. Expression of C. reinhardtii BKT in tobacco led to a twofold increase of total carotenoids in the leaves with astaxanthin being the predominant. The bkt genes described here provide a valuable resource for metabolic engineering of plants as cell factories for astaxanthin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BKT:

β-Carotene ketolase

CHYb:

β-Carotene hydroxylase

HPLC:

High-performance liquid chromatography

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase-PCR

WT:

Wild type

References

  • Breitenbach J, Misawa N, Kajiwara S, Sandmann (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140:241–246

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135

    Article  PubMed  CAS  Google Scholar 

  • Gerjets T, Sandmann M, Zhu C, Sandmann G (2007) Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol J 2:1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang JC, Chen F (2006) Simultaneous amplification of 5′ and 3′ cDNA ends based on template-switching effect and inverse PCR. Biotechniques 40:187–189

    Article  PubMed  CAS  Google Scholar 

  • Huang JC, Sandmann G, Chen F (2006) Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  PubMed  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  PubMed  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgen Res 17:489–501

    Article  CAS  Google Scholar 

  • Lohr M, Im CS, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490–515

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  PubMed  CAS  Google Scholar 

  • Ma RYN, Chen F (2001) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem 36:1175–1179

    Article  CAS  Google Scholar 

  • Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892

    Article  PubMed  CAS  Google Scholar 

  • Masamoto K, Misawa N, Kaneko T, Kikuno R, Toh H (1998) β-Carotene hydroxylase gene from cyanobacterium Synechocystis sp. Plant Cell Physiol 39:560–564

    Article  PubMed  CAS  Google Scholar 

  • McCarthy SS, Kobayashi MC, Niyogi KK (2004) White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics 168:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Misawa N (2009) Pathway engineering of plants toward astaxanthin production. Plant Biotechnol 26:93–99

    Article  CAS  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    PubMed  CAS  Google Scholar 

  • Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Qin S, Liu GX, Hu ZY (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802

    Article  CAS  Google Scholar 

  • Ralley L, Enfissi EMA, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39:477–486

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Stälberg K, Lindgren O, Ek B, Hoglund AS (2003) Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. Plant J 36:771–779

    Article  PubMed  Google Scholar 

  • Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Wilczek J, Odom JM, Cheng Q (2006) Engineering a β-carotene ketolase for astaxanthin production. Metab Eng 8:523–531

    Article  PubMed  CAS  Google Scholar 

  • Ye RW, Stead KJ, Yao H, He HX (2006) Mutational and functional analysis of the β-carotene ketolase involved in the production of canthaxanthin and astaxanthin. Appl Environ Microbiol 72:5829–5837

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Chen F, Liu X, Li XZ (2002) Carotenoid composition in the green microalga Chlorococcum. Food Chem 76:319–325

    Article  CAS  Google Scholar 

  • Zhang DH, Lee YK (2001) Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp strain MA-1. Appl Microbiol Biotechnol 55:537–540

    Article  PubMed  CAS  Google Scholar 

  • Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y, Xu ZF, Sandmann G, Chen F (2011) Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J Exp Bot 62:3659–3669

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Gerjets T, Sandmann G (2007) Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial CrtO ketolase gene. Transgen Res 16:813–821

    Article  CAS  Google Scholar 

  • Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Kunming Institute of Botany of Chinese Academy of Sciences, and the “985” project of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zhong, Y., Sandmann, G. et al. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236, 691–699 (2012). https://doi.org/10.1007/s00425-012-1654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1654-6

Keywords

Navigation