Skip to main content

Advertisement

Log in

Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Stomatal development in Arabidopsis thaliana has been linked to photoreceptor-perceived light through several components of the photomorphogenic switch, whose lack of function is often seedling-lethal. CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) is an important component of this switch, its loss of function producing stomatal clusters. Exploiting the reduced lethality of the cop10-1 mutant we characterized the developmental basis of its stomatal phenotype. Constitutive, light-independent stomata overproduction accounts for half of cop10-1 stomatal abundance and appears very early in development. Clusters are responsible for the remaining stomata excess and build-up progressively at later stages. Serial impressions of living cotyledon epidermis allowed a dynamic, quantitative analysis of stomatal lineage types by reconstructing their division histories. We found that COP10 adjusts the initiation frequency and extension of stomatal lineages (entry and amplifying asymmetric divisions) and represses stomatal fate in lineage cells; COP10 also supervises the orientation of spacing divisions in satellite lineages, preventing the appearance of stomata in contact. Aberrant accumulation of the proliferating stomatal lineage cell marker TMMpro::TMM-GFP showed that the abundant cop10-1 stomatal lineages maintained extended and ectopic competence for stomatal fate. Expression of stomatal development master genes suggests that the mutant does not bypass major molecular actors in this process. cop10-1 first leaf produces trichomes and apparently normal pavement cells, but functionally and morphologically aberrant stomata; COP10 operates genetically in parallel to the stomatal repressor SDD1 and does not generally affect epidermal cell differentiation, but seems to operate on stomatal lineages where it controls specific cell-lineage and cell-signaling developmental mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

M:

Meristemoid

MMC:

Meristemoid mother cells

GMC:

Guard mother cell

SLGC:

Stomatal-lineage ground cells

TMM :

TOO MANY MOUTHS

Ws:

Wassilewskija

References

  • Abrash EB, Davies KA, Bergmann DC (2011) Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions. Plant Cell 23:2864–2879

    Article  PubMed  CAS  Google Scholar 

  • Ang LH, Deng XW (1994) Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6:613–628

    PubMed  CAS  Google Scholar 

  • Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131

    PubMed  CAS  Google Scholar 

  • Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163–181

    Article  PubMed  CAS  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Bhave NS, Veley KM, Nadeau JA, Lucas JR, Bhave SL, Sack FD (2009) TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. Planta 229:357–367

    Article  PubMed  CAS  Google Scholar 

  • Bou-Torrent J, Roig-Villanova I, Martínez-García JF (2008) Light signaling: back to space. Trends Plant Sci 13:108–114

    Article  PubMed  CAS  Google Scholar 

  • Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23

    Article  PubMed  CAS  Google Scholar 

  • Casson SA, Hetherington AM (2010) Environmental regulation of stomatal development. Curr Opin Plant Biol 13:90–95

    Article  PubMed  CAS  Google Scholar 

  • Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol 19:229–234

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58:991–999

    Article  PubMed  CAS  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Deng XW, Caspar T, Quail PH (1991) cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5:1172–1182

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Bergmann DC (2010) Stomatal patterning and development. Curr Top Dev Biol 91:267–297

    Article  PubMed  CAS  Google Scholar 

  • Geisler MJ, Sack FD (2002) Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons. New Phytol 153:469–476

    Article  Google Scholar 

  • Geisler M, Nadeau J, Sack FD (2000) Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12:2075–2086

    PubMed  CAS  Google Scholar 

  • Geisler MJ, Deppong DO, Nadeau JA, Sack FD (2003) Stomatal neighbor cell polarity and division in Arabidopsis. Planta 216:571–579

    PubMed  CAS  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  PubMed  CAS  Google Scholar 

  • Kang C-Y, Lian H-L, Wang F-F, Huang J-R, Yang H-Q (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–2641

    Article  PubMed  CAS  Google Scholar 

  • Kwok SF, Piekos B, Misera S, Deng XW (1996) A complement of ten essential and pleiotropic Arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol 110:731–742

    Article  PubMed  CAS  Google Scholar 

  • Lai LB, Nadeau JA, Lucas J, Lee E-K, Nakagawa T, Zhao L, Geisler M, Sack FD (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. Plant Cell 17:2754–2767

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16:21–31

    Article  PubMed  CAS  Google Scholar 

  • Lucas JR, Nadeau JA, Sack FD (2006) Microtubule arrays and Arabidopsis stomatal development. J Exp Bot 57:71–79

    Article  PubMed  CAS  Google Scholar 

  • MacAlister CA, Ohashi-Ito K, Bergmann DC (2007) Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445:537–540

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Koncz C (1997) Method for preparation of epidermal imprints using agarose. Biotechniques 22:280–282

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Miséra S, Müller AJ, Weiland-Heidecker U, Jürgens G (1994) The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet 244:242–252

    Article  PubMed  Google Scholar 

  • Murashige T, Shoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nadeau JA, Sack FD (2002a) Stomatal development in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0066

  • Nadeau JA, Sack FD (2002b) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JA, Sack FD (2003) Stomatal development: cross talk puts mouths in place. Trends Plant Sci 8:294–299

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Komeda Y (2004) Flowering of Arabidopsis cop1 mutants in darkness. Plant Cell Physiol 45:398–406

    Article  PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Bergmann DC (2006) Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 18:2493–2505

    Article  PubMed  CAS  Google Scholar 

  • Pillitteri LJ, Torii KU (2007) Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. BioEssays 29:861–870

    Article  PubMed  CAS  Google Scholar 

  • Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU (2007) Termination of asymmetric cell division and differentiation of stomata. Nature 445:501–505

    Article  PubMed  CAS  Google Scholar 

  • Roldán M, Gómez-Mena C, Ruiz-García L, Salinas J, Martínez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590

    Article  PubMed  Google Scholar 

  • Rychel A, Peterson K, Torii K (2010) Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. J Plant Res 123:275–280

    Article  PubMed  CAS  Google Scholar 

  • Salisbury EJ (1927) On the causes and ecological significance of stomatal frequency with special reference to woodland flora. Philos Trans R Soc Lond B Biol Sci 216:1–65

    Google Scholar 

  • Serna L, Fenoll C (1997) Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers. Plant J 12:747–755

    Article  PubMed  CAS  Google Scholar 

  • Serna L, Fenoll C (2000) Stomatal development and patterning in Arabidopsis leaves. Physiol Plant 109:351–358

    Article  CAS  Google Scholar 

  • Serna L, Torres-Contreras J, Fenoll C (2002) Clonal analysis of stomatal development and patterning in Arabidopsis leaves. Dev Biol 241:24–33

    Article  PubMed  CAS  Google Scholar 

  • Suzuki G, Yanagawa Y, Kwok SF, Matsui M, Deng X-W (2002) Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev 16:554–559

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Thum K, Shin M, Gutierrez R, Mukherjee I, Katari M, Nero D, Shasha D, Coruzzi G (2008) An integrated genetic, genomic and systems approach defines gene networks regulated by the interaction of light and carbon signaling pathways in Arabidopsis. BMC Syst Biol 2:31

    Article  PubMed  Google Scholar 

  • Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW (1994) Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6:629–643

    PubMed  CAS  Google Scholar 

  • Wei N, Serino G, Deng X-W (2008) The COP9 signalosome: more than a protease. Trends Biochem Sci 33:592–600

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Sack FD (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7:2227–2239

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Fred Sack (University of British Columbia, Canada) for the kind gift of the proTMM::TMM-GFP seeds, and the Nottingham Arabidopsis Stock Centre (UK) for providing cop10-1 and Ws seeds. We also thank two anonymous reviewers and the Editor for their useful criticisms during the revision of the manuscript. This work was supported by grants from the Ministerio de Ciencia e Innovación (BIO2007-60276 to C.F. and M.M., and CSD2007-00057 to C.F.) and the Consejería de Ciencia y Educación-JCCM (PAI07-0036-3278 to M.M.). IB was funded by a postdoctoral fellowship granted by the Consejería de Ciencia y Educación-JCCM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Montaña Mena or Carmen Fenoll.

Additional information

D. Delgado and I. Ballesteros contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 5 (DOC 684 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, D., Ballesteros, I., Torres-Contreras, J. et al. Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development. Planta 236, 447–461 (2012). https://doi.org/10.1007/s00425-012-1617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1617-y

Keywords

Navigation