Skip to main content
Log in

Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

EMM:

Edinburgh’s minimal medium

GSH:

Glutathione

PC:

Phytochelatin

PCS:

Phytochelatin synthase

RT-PCR:

Reverse transcription polymerase chain reaction

RACE-PCR:

Rapid amplification of cDNA ends-polymerase chain reaction

WT:

Wild type

YNB:

Yeast nitrogen base

References

  • Agatep R, Kirkpatrick RD, Parchaliuk DL, Woods RA, Gietz RD (1998) Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ss-DNA/PEG) protocol. Technical Tips Online (http://tto.trends.com)

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49:740–749

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Meyer KC, Wünsshmann J, Lendzian K, Grill E (2010) Cytosolic action of phytochelatin synthase. Plant Physiol 153:159–169

    Article  PubMed  CAS  Google Scholar 

  • Cazalé AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219

    Article  PubMed  Google Scholar 

  • Chenina R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006a) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006b) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Peršoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Bloss T, Vess C, Neumann D, Nies DH, zur Nieden U (2002) A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance. J Biol Chem 277:18215–18221

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, Cd-sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78

    Article  PubMed  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144(2):1052–1065

    Google Scholar 

  • Craciun AR, Courbot M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N (2006) Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. J Exp Bot 57:2967–2983

    Article  PubMed  Google Scholar 

  • Craven RA, Griffiths DJ, Sheldrick KS, Randall RE, Hagan IM, Carr AM (1998) Vectors for the expression of tagged proteins in Schizosaccharomyces pombe. Gene 221:59–68

    Article  PubMed  CAS  Google Scholar 

  • de Knecht JA, van Baren N, Ten Bookum WM, Wong Fong Sang HW, Koevoets PLM, Schat H, Verkleij JAC (1995) Synthesis and degradation of phytochelatins in Cd-sensitive and Cd-tolerant Silene vulgaris. Plant Sci 106:9–18

    Article  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J & C. Presl). Planta 214:635–640

    Article  PubMed  CAS  Google Scholar 

  • Ernst WH, Krauss GJ, Verkleij JA, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through PCs. Z Naturforsch 44c:361–369

    Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and Cd in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke I, Haydon M, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Allica J, Garbisu C, Becerril M, Barrutia O, Garcia-Plazaola JI, Zhao J, MacGrath SP (2006) Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ 29:1422–1429

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Cobbett CS (1992) Cd-Sensitive mutants of Arabidopsis thaliana. Plant Physiol 99:100–107

    Article  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995a) A Cd-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995b) Cd-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Kanter-Smoler G, Dahlkvist A, Sunnerhagen P (1994) Improved method for rapid transformation of intact Schizosaccharomyces pombe cells. Biotechnology 16:798–800

    CAS  Google Scholar 

  • Kim JH, Lee S (2007) Overexpression of Arabidopsis phytochelatin synthase (atpcsi) does not change the maximum capacity for non-protein thiol production induced by cadmium. J Plant Biol 50:220–223

    Article  CAS  Google Scholar 

  • Konishi T, Matsumoto S, Tsuruwaka Y, Shiraki K, Hirata K, Tamaru Y, Takagi M (2006) Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase. J Biol Recognit 122:316–325

    CAS  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klauche W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  Google Scholar 

  • Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by Cd during early stages of plant development. Planta 215:689–693

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to Cd stress. Plant Physiol 131:656–663

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45(12):1787–1797

    Google Scholar 

  • Li J-C, Guo J-B, Xu W-Z, Ma M (2007) RNA Interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. J Integr Biol 49:1032–1037

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Kornives EA, Kehr J, Schroeder J (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed  CAS  Google Scholar 

  • Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J Biochem 277:4747–4754

    CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  PubMed  CAS  Google Scholar 

  • Roosens N, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577:9–16

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  PubMed  CAS  Google Scholar 

  • Semane B, Cuypers A, Smeets K, van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cd responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Siegel S, Castellan NJ (1988) Non parametric statistics for the behavioural sciences. MacGraw-Hill, New York

    Google Scholar 

  • Sneller FEC, van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC (2000) Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and Cd: comparison of derivatization with Ellman’s reagent and monobromobimane. J Agric Food Chem 48:4014–4019

    Article  PubMed  CAS  Google Scholar 

  • Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    Article  CAS  Google Scholar 

  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess Zn and contributes significantly to the accumulation of Zn. Plant Physiol 149:938–948

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. J Biol Chem 276:20817–20820

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009a) Mechanisms to cope with arsenic or Cd excess in plants. Curr Opin in Plant Biol 12:364–372

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009b) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Skłodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS1 genes on plant response to Cd. J Exp Bot 59:2205–2219

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  PubMed  CAS  Google Scholar 

  • Young DJ, Nimmo ER, Allshire RC (1998) A Schizosaccharomyces pombe artificial chromosome large DNA cloning system. Nucl Acids Res 26:5052–5060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to P. Salis for technical help. We also thank anonymous reviewers for their helpful and constructive comments on the manuscript. This work was supported by the European Union (Research Training Network METALHOME, grant no. HPRN–CT–2002–00243, and in part through its Sixth Framework Program for RTD, contract no FOOD-CT-2006- 016253), grant from the Belgian Programme on Interuniversity Poles (Science Policy Program VI/33) and the FNRS (FRFC 2.4.583.08). A-C. C. was supported by an Alexander-von-Humboldt fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Verbruggen.

Additional information

C.-L. Meyer, D. Peisker contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, CL., Peisker, D., Courbot, M. et al. Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases. Planta 234, 83–95 (2011). https://doi.org/10.1007/s00425-011-1378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1378-z

Keywords

Navigation