Skip to main content
Log in

Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cardosin A is the major vacuolar aspartic proteinase (APs) (E.C.3.4.23) in pistils of Cynara cardunculus L. (cardoon). Plant APs carry a unique domain, the plant-specific-insert (PSI), and a pro-segment which are separated from the catalytic domains during maturation but the sequence and location of processing steps for cardosins have not been established. Here transient expression in tobacco and inducible expression in Arabidopsis indicate that processing of cardosin A is conserved in heterologous species. Pulse chase analysis in tobacco protoplasts indicated that cleavage at the carboxy-terminus of the PSI could generate a short-lived 50 kDa intermediate which was converted to a more stable 35 kDa intermediate by removal of the PSI. Processing intermediates detected immunologically in tobacco leaves and Arabidopsis seedlings confirmed that cleavage at the amino-terminus of the PSI either preceded or followed quickly after cleavage at its carboxy-terminus. Thus removal of PSI preceded the loss of the prosegment in contrast to the well-characterised barley AP, phytepsin. PreprocardosinA acquired a complex glycan and its processing was inhibited by brefeldin A and dominant-inhibitory AtSAR1 or AtRAB-D2a mutants indicating that it was transported via the Golgi and that processing followed ER export. The 35 kDa intermediate was present in the cell wall and protoplast culture medium as well as the vacuole but the 31 kDa mature subunit, lacking the amino-terminal prosegment, was detected only in the vacuole. Thus maturation appears to occur only after sorting from the trans-Golgi to the vacuole. Processing or transport of cardosin A was apparently slower in tobacco protoplasts than in whole cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP:

Aspartic proteinase

ER:

Endoplasmic reticulum

PSI:

Plant specific insert

SAPLIP:

Saposin-like protein

References

  • Andreeva A, Zheng H, Saint-Jore C, Kutuzov M, Evans D, Hawes C (2000) Organization of transport from endoplasmic reticulum to Golgi in higher plants. Biochem Soc Trans 28:505–512

    Article  PubMed  CAS  Google Scholar 

  • Asakura T, Matsumoto I, Funaki J, Arai S, Abe K (2000) The plant aspartic proteinase-specific polypeptide insert is not directly related to the activity of oryzasin 1. Eur J Biochem 267:5115–5122

    Article  PubMed  CAS  Google Scholar 

  • Bassham D, Raikhel N (2000) Unique features of the plant vacuolar sorting machinery. Curr Opin Cell Biol 12:491–495

    Article  PubMed  CAS  Google Scholar 

  • Batoko H, Zheng H, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218

    Article  PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Cruz SS, Martin B, Beterridge M, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Burnette W (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulphate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  • Castanheira P, Samyn B, Sergeant K, Clemente JC, Dunn BM, Pires E, Van Beeumen J, Faro C (2005) Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. J Biol Chem 280:13047–13054

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels M, Herman E (2000) Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Ashford D, Nimtz M, Bento I, Frazão C, Esteves C, Faro C, Kervinen J, Pires E, Veríssimo P, Wlodawer A, Carrondo M (1997) The glycosilation of the aspartic proteinases from barley (Hordeum vulgare L.) and cardoon (Cynara cardunculus L.). Eur J Biochem 243:695–700

    Article  PubMed  CAS  Google Scholar 

  • Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  PubMed  CAS  Google Scholar 

  • daSilva LLP, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O, Brandizzi F, Denecke J (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17:132–148

    Article  PubMed  CAS  Google Scholar 

  • Denecke J, Vitale A (1995) The use of protoplasts to study protein synthesis and transport by the plant endomembrane system. Method Cell Biol 50: 335–348

    Article  CAS  Google Scholar 

  • Di Sansebastiano G, Paris N, Marc-martin S, Neuhaus J (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propetide-mediated sorting pathway. Plant J 15:449–457

    Article  PubMed  CAS  Google Scholar 

  • Duarte P, Figueiredo R, Pereira S, Pissarra J (2006) Structural characterization of the stigma-style complex of Cynara cardunculus (Asteraceae) and immunolocalization of cardosins A and B during floral development. Can J Bot 84:737–749

    Article  CAS  Google Scholar 

  • Dunn B (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 102:4431–4458

    Article  PubMed  CAS  Google Scholar 

  • Egas C, Lavoura N, Resende R, Brito R, Pires E, Lima M, Faro C (2000) The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage. J Biol Chem 275:38190–38196

    Article  PubMed  CAS  Google Scholar 

  • Faro C, Gal S (2005) Aspartic proteinase content of the Arabidopsis genome. Curr Protein Pept Sci 6:493–500

    Article  PubMed  CAS  Google Scholar 

  • Faro C, Ramalho-Santos M, Vieira M, Mendes A, Simões I, Andrade R, Veríssimo P, Lin X, Tang J, Pires E (1999) Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. J Biol Chem 274:28724–28729

    Article  PubMed  CAS  Google Scholar 

  • Glathe S, Kervinen J, Nimtz M, Li G, Tobin G, Copeland T, Ashford D, Wlodawer A, Costa J (1998) Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.). J Biol Chem 273:31230–31236

    Article  PubMed  CAS  Google Scholar 

  • Glickman JN, Kornfeld S (1993) Mannose-6-phosphate independent targeting of lysosomal-enzymes in I-cell disease B-lymphoblasts. J Cell Biol 123:99–108

    Article  PubMed  CAS  Google Scholar 

  • Hadlington J, Denecke J (2000) Sorting of soluble proteins in the secretory pathway of plants. Curr Opin Plant Biol 3:461–468

    Article  PubMed  CAS  Google Scholar 

  • Hadlington J, Denecke J (2001) Transient expression, a tool to address questions in plant cell biology. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology: a practical approach. Oxford University Press, Oxford, pp 107–126

    Google Scholar 

  • Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kervinen J, Tobin G, Costa J, Waugh D, Wlodawer A, Zdanov A (1999) Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 18:3947–3955

    Article  PubMed  CAS  Google Scholar 

  • Khan A, James M (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7:815–836

    Article  PubMed  CAS  Google Scholar 

  • Koelsch G, Mares M, Metcalf P, Fusek M (1994) Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett 343:6–10

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Bassham D, Raikhel N, Nakamura K (1995) Different sensitivity to wortmannin of 2 vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Mutlu A, Gal S (1999) Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569–576

    Article  CAS  Google Scholar 

  • Phillipson B, Pimpl P, daSilva L, Crofts A, Taylor J, Movafeghi A, Robinson D, Denecke J (2001) Secretory bulk flow of soluble proteins is efficient and COPII dependent. Plant Cell 13:2005–2020

    Article  PubMed  CAS  Google Scholar 

  • Pimentel C, Pires E, Faro C, Rodrigues-Pousada C (2006) Genomic organization and functional analysis of Cynara cardunculus L. aspartic protease gene family. FEBS J 273:PP1071

    Google Scholar 

  • Pimpl P, Hanton S, Taylor J, Pinto-da Silva L, Denecke J (2003) The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole. Plant Cell 15:1242–1256

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Veríssimo P, Faro C, Pires E (1996) Action on bovine α(s1-casein of cardosins A and B, aspartic proteinase from the flowers of the cardoon Cynara cardunculus L. Biochim Biophys Acta 1297:83–89

    PubMed  Google Scholar 

  • Ramalho-Santos M, Pissarra J, Veríssimo P, Pereira S, Salema R, Pires E, Faro C (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203:204–212

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Veríssimo P, Cortes L, Samyn B, Van Beeumen J, Pires E (1998) Identification and proteolytic processing of procardosin A. Eur J Biochem 255:133–138

    Article  PubMed  CAS  Google Scholar 

  • Rijnboutt S, Aerts H, Geuze HJ, Tager JM, Strous GJ (1991) Mannose 6-phosphate-independent membrane association of cathepsin-d, glucocerebrosidase, and sphingolipid-activating protein in Hepg2 cells. J Biol Chem 266:4862–4868

    PubMed  CAS  Google Scholar 

  • Saint-Jore C, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  • Simões I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Ueda T, Sato K, Abe H, Nagata H, Nakano A (2000) A dominant negative mutant of Sar1 GTPase inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 23:517–525

    Article  PubMed  CAS  Google Scholar 

  • Terauchi K, Asakura T, Ueda H, Tamura T, Tamura K, Matsumoto I, Misaka T, Hara-Nishimura I, Abe K (2006) Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. J Plant Physiol 163:856–862

    Article  PubMed  CAS  Google Scholar 

  • Tormakangas K, Hadlington J, Pimpl P, Hillmer S, Brandizzi F, Teeri T, Denecke J (2001) A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13:2021–2032

    Article  PubMed  CAS  Google Scholar 

  • Veríssimo P, Faro C, Moir A, Lin Y, Tang J, Pires E (1996) Purification, characterization and partial aminoacid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur J Biochem 235:762–768

    Article  PubMed  Google Scholar 

  • Zheng HQ, Wang GL, Zhang L (1997) Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Mol Plant Microbe In 10:1010–1014

    Google Scholar 

  • Zheng HQ, Camacho L, Wee E, Henri BA, Legen J, Leaver CJ, Malho R, Hussey PJ, Moore I (2005) A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell 17:2020–2036

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Corner G (1994) Intermolecular association of lysosomal protein precursors during biosynthesis. J Biol Chem 269:3846–3851

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jürgen Denecke (University of Leeds, UK) for the gift of anti-calreticulin antibody, to Tony Schaeffner (GSF Research Centre, München, Germany) for the anti-At-α-TIP antibody and to Sandro Vitale for advice on pulse chase and immunoprecipitation. We thank an anonymous reviewer for constructive comments that improved the manuscript. This research was supported by the Portuguese Science and Technology Foundation—Fundação para a Ciência e a Tecnologia (FCT), project POCTI/BME/39765/2001. The corresponding author, Patrícia Duarte, was beneficiary of a PhD grant from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Duarte.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, P., Pissarra, J. & Moore, I. Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. Planta 227, 1255–1268 (2008). https://doi.org/10.1007/s00425-008-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0697-1

Keywords

Navigation