Skip to main content
Log in

Differential responses of the promoters from nearly identical paralogs of loblolly pine (Pinus taeda L.) ACC oxidase to biotic and abiotic stresses in transgenic Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Promoters from an ACC oxidase gene (PtACO1) and its nearly identical paralog (NIP) (PtACO2) of loblolly pine (Pinus taeda L.) were recovered from genomic DNA using PCR amplification. Transgenic Arabidopsis plants harboring genetic constructs from which β-glucuronidase (GUS) expression was driven by the full-length (pACO1:GUS, pACO2:GUS) or truncated (pACO1-1.2:GUS, pACO2-1.2:GUS) loblolly pine ACC oxidase gene promoters displayed distinctive patterns of expression for the different promoter constructs. Both full-length promoter constructs, but not those using truncated promoters, responded to indole-3-acetic acid (IAA) and wounding. Both pACO1:GUS and pACO1-1.2:GUS responded to pathogen attack, while neither version of the pACO2 promoter responded to infection. In the inflorescence stalks, the full-length pACO1 promoter construct, but not the truncated pACO1-1.2:GUS or either pACO2 construct, responded to bending stress. When flowering transgenic Arabidopsis plants were placed in a horizontal position for 48 h, expression from pACO2:GUS, but not the other constructs, was induced on the underside of shoots undergoing gravitropic reorientation. The expression pattern for the pACO2:GUS construct in transgenic Arabidopsis was consistent with what might be expected for a gene promoter involved in the compression wood response in loblolly pine. Although near complete sequence identity between PtACO1 and PtACO2 transcripts prevented quantitation of specific gene products, the promoter expression analyses presented in this study provide strong evidence that the two ACC oxidase genes are likely differentially expressed and responded to different external stimuli in pine. These results are discussed with respect to the potential functional differences between these two genes in loblolly pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

CaMV:

Cauliflower mosaic virus

GUS:

Glucuronidase

IAA:

Indole acetic acid

PGRs:

Plant growth regulators

X-gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, San Diego, pp 108–113

    Google Scholar 

  • Aloni R (2001) Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul 20:22–34

    Article  CAS  Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    PubMed  CAS  Google Scholar 

  • Andersson-Gunneras S, Hellgren JM, Bjorklund S, Regan S, Moritz T, Sundberg B (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS (1998) Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38:449–460

    Article  PubMed  CAS  Google Scholar 

  • Avila C, Cantón FR, Barnestein P, Suárez M-F, Marraccini P, Rey M, Humara JM, Ordás R, Cánovas FM (2001) The promoter of a cytosolic glutamine synthetase gene from the conifer Pinus sylvestris is active in cotyledons of germinating seeds and light-regulated in transgenic Arabidopsis thaliana. Physiol Plant 112:388–396

    Article  PubMed  CAS  Google Scholar 

  • Barnes JR, Lorenz WW, Dean JFD (2008) Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.). Gene 413:18–31

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535

    Article  PubMed  CAS  Google Scholar 

  • Blake TJ, Pharis RP, Reid DM (1980) Ethylene, gibberellins, auxin and the apical control of branch angle in a conifer, Cupressus arizonica. Planta 148:64–68

    Article  CAS  Google Scholar 

  • Blume B, Grierson D (1997) Expression of ACC oxidase promoter–GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J 12:731–746

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Cho YG, Park MY, Lee MC, Eun MY, Kang BG, Kim WT (2000) Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.). Plant Cell Physiol 41:354–362

    PubMed  CAS  Google Scholar 

  • Chen BC-M, McManus MT (2006) Expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes during the development of vegetative tissues in white clover (Trifolium repens L.) is regulated by ontological cues. Plant Mol Biol 60:451–467

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Core HA, Côté WA, Day AC (1976) Wood structure and identification. Syracuse University Press, Syracuse, pp 37–40

    Google Scholar 

  • Du S, Sugano M, Tsushima M, Nakamura T, Yamamoto F (2004) Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J Plant Res 117:171–174

    Article  PubMed  CAS  Google Scholar 

  • Emrich SJ, Li L, Wen TJ, Yandeau-Nelson MD, Fu Y, Guo L, Chou HH, Aluru S, Ashlock DA, Schnable PS (2007) Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 175:429–439

    Article  PubMed  CAS  Google Scholar 

  • Englert C, Hou X, Maheswaran S, Bennett P, Ngwu C, Re GG, Garvin AJ, Rosner MR, Haber DA (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675

    PubMed  CAS  Google Scholar 

  • Funada R, Mizukami E, Kubo T, Fushitani M, Sugiyama T (1990) Distribution of indole-3-acetic acid and compression wood formation in the stems of inclined Cryptomerica japonica. Holzforschung 44:331–334

    Article  CAS  Google Scholar 

  • Godard K-A, Byun-McKay A, Levasseur C, Plant A, Séguin A, Bohlmann J (2007) Testing of a heterologous, wound- and insect-inducible promoter for functional genomics studies in conifer defense. Plant Cell Rep 26:2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Gould JH, Zhou Y, Padmanabhan V, Magallanes-Cedeno ME, Newton RJ (2002) Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Mol Breeding 10:131–141

    Article  CAS  Google Scholar 

  • Hamilton AJ, Bouzayen M, Grierson D (1991) Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88:7434–7437

    Article  PubMed  CAS  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  PubMed  CAS  Google Scholar 

  • Henskens JAM, Rouwendal GJA, Ten Have A, Woltering EJ (1994) Molecular cloning of two different ACC synthase PCR fragments in carnation flowers and organ-specific expression of the corresponding genes. Plant Mol Biol 26:453–458

    Article  PubMed  CAS  Google Scholar 

  • Höfig KP, Moyle RL, Putterill J, Walter C (2003) Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. Planta 217:858–867

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Bird CR, Ray J, Schuch W, Grierson D (1987) Structure and expression of an ethylene-related mRNA from tomato. Nucl Acid Res 15:731–739

    Article  CAS  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-carboxylic acid oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    Article  PubMed  CAS  Google Scholar 

  • Itai A, Kawata T, Tanabe K, Tamura F, Uchiyama M, Tomomitsu M, Shiraiwa N (1999) Identification of 1-aminocyclopropane-1-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Mol Gen Genet 261:42–49

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kim WT, Yang SF (1994) Structure and expression of cDNAs encoding 1-aminocyclopropane-1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls. Planta 194:223–229

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Choi D, Lee MM, Lee SH, Kim WT (1998) Biotic and abiotic stress-related expression of 1-aminocyclopropane-1-carboxylate oxidase gene family in Nicotiana glutinosa L. Plant Cell Physiol 39:565–573

    PubMed  CAS  Google Scholar 

  • Kimbrough JM, Salinas-Mondragon S, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136:790–2805

    Article  Google Scholar 

  • Kwon M, Bedgar DL, Piastuch W, Davin LB, Lewis NG (2001) Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. Phytochemistry 57:847–857

    Article  PubMed  CAS  Google Scholar 

  • Lasserre E, Bouqin T, Hernandez JA, Bull J, Pech JC, Balague C, Bull J (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251:81–90

    PubMed  CAS  Google Scholar 

  • Lasserre R, Godard F, Bouqin T, Hernandez JA, Pech JC, Roby D, Balague C (1997) Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Mol Gen Genet 256:211–222

    Article  PubMed  CAS  Google Scholar 

  • Lay VJ, Prescott AG, Thomas PG, John P (1996) Heterologous expression and site-directed mutagenesis of the 1-aminocyclopropane-1-carboxylate oxidase from kiwi fruit. Eur J Biochem 242:228–234

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol 9:963–967

    Article  CAS  Google Scholar 

  • Le Provost G, Paiva J, Pot D, Brach J, Plomion C (2003) Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine-rich protein. Planta 217:820–830

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Little CHA, Eklund L (1999) Ethylene in relation to compression formation in Abies balsamea shoots. Trees 13:173–177

    Google Scholar 

  • Little CHA, Lavigne MB (2002) Gravimorphism in current-year shoots of Abies balsamea: involvement of compensatory growth, indole-3-acetic acid transport and compression wood formation. Tree Physiol 22:311–320

    PubMed  CAS  Google Scholar 

  • Liu X, Shiomi S, Nakatsuka A, Kubo Y, Nakamura R, Inaba A (1999) Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiol 121:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221:159–169

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272

    Article  PubMed  CAS  Google Scholar 

  • López-Gómez R, Morales-Domínguez F, Mendoza Alcázar O, Gómez-Lim MA (2004) Identification of a genomic clone to ACC oxidase from papaya (Carica papaya L.) and expression studies. J Agric Food Chem 52:794–800

    Article  PubMed  CAS  Google Scholar 

  • Mita S, Kawamura S, Yamawaki K, Nakamura K, Hyodo H (1998) Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit (Passiflora edulis Sims). Plant Cell Physiol 39:1209–1217

    PubMed  CAS  Google Scholar 

  • Moon H, Callahan AM (2004) Developmental regulation of peach ACC oxidase promoter-GUS fusions in transgenic tomato fruits. J Exp Bot 55:1519–1528

    Article  PubMed  CAS  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant response to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Morita MT, Tasaka T (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JA, Zhang XS, Nair H, O’Neill SD (1993) Temporal and spatial regulation of 1-aminocyclopropane-1-carbocylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiol 103:31–39

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka A, Shiomi S, Kubo Y, Inaba A (1997) Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol 38:1103–1110

    PubMed  CAS  Google Scholar 

  • Nie X, Singh RP, Tai GCC (2002) Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses. Genome 45:913–950

    Article  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase in Brassica oleracea. Plant Cell 9:49–60

    Article  PubMed  CAS  Google Scholar 

  • Plomion C, Pionneau C, Brach J, Costa P, Baillerès H (2000) Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Physiol 123:959–970

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126:3661–3668

    PubMed  CAS  Google Scholar 

  • Rodrigues-Pousada RA, De Rycke R, Dedonder A, Van Caeneghem W, Engler G, Van Montagu M, Van Der Straeten D (1993) The Arabidopsis 1-Aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development. Plant Cell 5:897–911

    Article  PubMed  CAS  Google Scholar 

  • Ross GS, Knighton ML, Lay-Yee M (1992) An ethylene-related cDNA from ripening apples. Plant Mol Biol 19:231–238

    Article  PubMed  CAS  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  PubMed  CAS  Google Scholar 

  • Ruperti B, Bonghi C, Rasori A, Ramina A, Tonutti P (2001) Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plant 111:336–344

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  • Salman-Minkov A, Levi A, Wolf S, Trebitsh T (2008) ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin. Plant Cell Physiol 49:740–750

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring harbor Laboratory Press, Cold Spring Harbor, pp 93–94

    Google Scholar 

  • Savidge RA (1983) The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochem J 15:447–466

    Article  PubMed  CAS  Google Scholar 

  • Solano R, Nieto C, Avila J, Cañas L, Diaz I, Paz-Ares J (1995) Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J 14:1773–1784

    PubMed  CAS  Google Scholar 

  • Spanu P, Reinhardt D, Boller T (1991) Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its messenger-RNA in Xenopus-laevis oocytes. EMBO J 10:2007–2013

    PubMed  CAS  Google Scholar 

  • Sundberg B, Little CHA (1990) Tracheid production in response to changes in the internal level of indole-3-acetic acid in 1-year-old shoots of Scott pine. Plant Physiol 94:1721–1727

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signaling pathways to control plant development. Plant Mol Biol 49:409–424

    Article  Google Scholar 

  • Tang X, Wang H, Brandt AS, Woodson WR (1993) Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Mol Biol 23:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989

    Article  PubMed  CAS  Google Scholar 

  • Telewski FW (1990) Growth, wood density, and ethylene production in response to mechanical perturbation in Pinus taeda. Can J For Res 20:1277–1282

    Article  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Heidelberg, vol 2, pp 733, 983–1262

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Wang NN, Shih MC, Li N (2005) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920

    Article  PubMed  CAS  Google Scholar 

  • Weterings K, Pezzotti M, Cornelissen M, Mariani C (2002) Dynamic 1-aminocyclopropane-1-carboxylate-synthase and–oxidase transcript accumulation patterns during pollen tube growth in tobacco styles. Plant Physiol 130:1190–1200

    Article  PubMed  CAS  Google Scholar 

  • White AJ, Dunn MA, Brown K, Hughes MA (1994) Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot 45:1885–1892

    Article  CAS  Google Scholar 

  • Wilson BF, Chien CT, Zaerr JB (1989) Distribution of endogenous indole-3-acetic acid and compression wood formation in reoriented branches of Douglas-fir. Plant Physiol 91:338–344

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yu SJ, Kim S, Lee JS, Lee DH (1998) Differential accumulation of transcripts for ACC synthase and ACC oxidase homologs in etiolated mung bean hypocotyls in response to various stimuli. Mol Cells 8:350–358

    PubMed  CAS  Google Scholar 

  • Yuan S, Wang Y, Dean JFD (2010) ACC oxidase genes expressed in the wood-forming tissues of loblolly pine (Pinus taeda L.) include a pair of Nearly Identical Paralogs (NIPs). Gene 453:24–36

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sederoff RR, Allona I (2000) Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. Tree Physiol 20:457–466

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. J. Nairn for providing plant materials, vectors and numerous technical suggestions. Thanks also to Dr. S.A. Merkle for assistance with photomicrographs. This work was funded by United States Department of Agriculture (grant number 98-35103-6534) to J.F.D.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey F. D. Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, S., Dean, J.F.D. Differential responses of the promoters from nearly identical paralogs of loblolly pine (Pinus taeda L.) ACC oxidase to biotic and abiotic stresses in transgenic Arabidopsis thaliana . Planta 232, 873–886 (2010). https://doi.org/10.1007/s00425-010-1224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1224-8

Keywords

Navigation