Skip to main content
Log in

Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 22 June 2010

Abstract

As part of a project aiming to characterize the role of maize plastidial transglutaminase (chlTGZ) in the plant chloroplast, this paper presents results on stress induced by continuous chlTGZ over-expression in transplastomic tobacco leaves. Thylakoid remodelling induced by chlTGZ over-expression in young leaves of tobacco chloroplasts has already been reported (Ioannidis et al. in Biochem Biophys Acta 1787:1215–1222, 2009). In the present work, we determined the induced alterations in the photosynthetic apparatus, in the chloroplast ultrastructure, and, particularly, the activation of oxidative and antioxidative metabolism pathways, regarding ageing and functionality of the tobacco transformed plants. The results revealed that photochemistry impairment and oxidative stress increased with transplastomic leaf age. The decrease in pigment levels in the transformed leaves was accompanied by an increase in H2O2 and lipid peroxidation. The rise in H2O2 correlated with a decrease in catalase activity, whereas there was an increase in peroxidase activity. In addition, chlTGZ over-expression lead to a drop in reduced glutathione, while Fe-superoxide dismutase activity was higher in transformed than in wild-type leaves. Together with the induced oxidative stress, the over-expressed chlTGZ protein accumulated progressively in chloroplast inclusion bodies. These traits were accompanied by thylakoid scattering, membrane degradation and reduction of thylakoid interconnections. Consequently, the electron transport between photosystems decrease in the old leaves. In spite of these alterations, transplastomic plants can be maintained and reproduced in vitro. These results are discussed in line with chlTGZ involvement in chloroplast functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ΦPSII :

Quantum yield of PSII

Fv/Fm:

Maximum quantum yield of PSII

qP:

Photochemical quenching

\( F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}} \) :

Intrinsic efficiency of open PSII centres

NPQ:

Non-photochemical quenching

ETR:

Relative rate of electron transport

PPFD:

Photosynthetic photon flux density

ASC–GSH cycle:

Ascorbate–glutathione cycle

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

G6PDH:

Glucose-6-phosphate dehydrogenase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione reduced form

GSSG:

Glutathione oxidized form

GST:

Glutathione-S-transferase

MDHAR:

Monodehydroascorbate reductase

NADH-POX:

NADH-peroxidase

POX:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Chl:

Chlorophyll

IBs:

Inclusion bodies

PG:

Pale green leaves

TGase:

Transglutaminase

TGZ:

Maize transglutaminase

Y:

Yellow leaves

W:

White leaves

Wt:

Wild type

References

  • Anderson JM, Anderson B (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13:351–355

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated roIB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Bernet E, Claparols I, Dondini L, Santos M, Serafini-Fracassini D, Torné JM (1999) Changes in polyamine content, arginine and ornithine decarboxylases and transglutaminase activities during light/dark phases in maize calluses and their chloroplasts. Plant Physiol Biochem 37:899–909

    Article  CAS  Google Scholar 

  • Buchanan B, Gruissem W, Jones R (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Carvajal-Vallejos PK, Campos A, Fuentes-Prior P, Villalobos E, Almeida AM, Barberà E, Torné JM, Santos M (2007) Purification and in vitro refolding of maize chloroplast transglutaminase over expressed in Escherichia coli. Biotech Lett 29:1255–1262

    Article  CAS  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Del Duca S, Tidu V, Bassi R, Esposito C, Serafini-Fracassini D (1994) Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus L. Planta 193:283–289

    CAS  Google Scholar 

  • del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • Della Mea M, Di Sandro A, Dondini L, Del Duca S, Vantini F, Bergamini C, Bassi R, Serafini-Fracassini D (2004) A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a light-dependent way. Planta 219:754–764

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, García JA, Martínez-Gómez P, Hernández JA (2008) Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot 59:2147–2160

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: rbiesponse to plum pox virus. J Exp Bot 57:3813–3824

    Article  PubMed  Google Scholar 

  • Espinoza C, Medina C, Somerville S, Arce-Jhonson P (2007) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58:3197–3212

    Article  CAS  PubMed  Google Scholar 

  • Fleck I, Hogan KP, Llorens L, Abadía A, Aranda X (1998) Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Tree Physiol 18:607–614

    CAS  PubMed  Google Scholar 

  • Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Habing WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  Google Scholar 

  • Haliwell B, Gutteridge JMC (2003) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci 105:151–167

    Google Scholar 

  • Hernández JA, Campillo A, Jiménez A, Alarcón JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    Article  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Ros-Barceló A, Sevilla F (2001) Antioxidant systems and O ·−2 /H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  Google Scholar 

  • Hernández JA, Diaz-Vivancos P, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2006) Long-term PPV infection produces an oxidative stress in a susceptible apricot cultivar but not in a resistant cultivar. Physiol Plant 126:140–152

    Article  Google Scholar 

  • Ioannidis NK, Ortigosa SM, Veramendi J, Pintó-Marijuan M, Fleck I, Carvajal-Vallejos P, Kotzabasis K, Santos M, Torné JM (2009) Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochim Biophys Acta 1787:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea (Pisum sativum L.) leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Pastori GM, del Río LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  Google Scholar 

  • Kanematsu S, Asada K (1994) Superoxide dismutase. In: Fukui T, Soda K (eds) Molecular aspects of enzyme catalysis. Kondansha Ltd, Tokyo, pp 191–210

    Chapter  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    Article  CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Hérouart D, Montagu MV, Inzé D (1997) Differential expression of Cu-, Zn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress and hormonal treatments. J Exp Bot 48:2007–2014

    CAS  Google Scholar 

  • Landolt R, Matile P (1990) Glyoxisome-like microbodies in senescent spinach leaves. Plant Sci 72:159–163

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:360–370

    Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Rev Mol Cell Biol 4:140–156

    Article  CAS  Google Scholar 

  • Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol 100:138–145

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Overbaugh JM, Fall R (1985) Characterization of a selenium-independent glutathione peroxidase from Euglena gracilis. Plant Physiol 77:437–442

    Article  CAS  PubMed  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: calculation of qP and \( F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}} \) without measuring \( F^{\prime}_{0}\). Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Pastori GM, del Rio LA (1994) An activated oxygen-mediated role for peroxisomes in the mechanism of senescence of pea leaves. Planta 193:385–391

    Article  CAS  Google Scholar 

  • Pastori GM, del Rio LA (1997) Natural senescence of pea leaves. An activated oxygen-mediated function for peroxisomes. Plant Physiol 113:411–418

    CAS  PubMed  Google Scholar 

  • Pastori GM, Trippi VS (1993) Antioxidative protection in a drought-resistant maize strain during leaf senescence. Physiol Plant 87:227–231

    Article  CAS  Google Scholar 

  • Patykowski J, Urbanek H (2003) Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J Phytopathol 151:153–161

    Article  CAS  Google Scholar 

  • Pintó-Marijuan M, de Agazio M, Zacchini M, Santos MA, Torné JM, Fleck I (2007) Response of transglutaminase activity and bound putrescine to changes in light intensity under natural and controlled conditions in Quercus ilex leaves. Physiol Plant 131:159–169

    Article  PubMed  Google Scholar 

  • Queval G, Hager J, Gakiere B, Noctor G (2008) Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J Exp Bot 59:135–146

    Article  CAS  PubMed  Google Scholar 

  • Ros Barceló A, Gómez-Ros LV, Ferrer MA, Hernández JA (2006) The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees Struct Funct 20:145–156

    Google Scholar 

  • Scandalios JG (1968) Genetic control of multiple molecular forms of catalase in maize. Proc Natl Acad Sci USA 151:274–293

    CAS  Google Scholar 

  • Thompson JE (1988) The molecular basis for membrane deterioration during senescence. In: Noodén LD, Leopold AD (eds) Senescence and aging in plants. Academic Press, San Diego, pp 51–83

    Google Scholar 

  • Villalobos E, Torné JM, Rigau J, Ollés I, Claparols I, Santos M (2001) Immunogold localization of a transglutaminase related to grana development in different maize cell types. Protoplasma 216:155–163

    Article  CAS  PubMed  Google Scholar 

  • Villalobos E, Santos M, Talavera D, Rodríguez-Falcón M, Torné JM (2004) Molecular cloning and characterization of a maize transglutaminase complementary DNA. Gene 336:93–104

    Article  CAS  PubMed  Google Scholar 

  • Weisiger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248:3582–3592

    CAS  PubMed  Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish projects MEC BFU2006-15115-01/BMC, BIO2005-00155 and AGL2006-07143/AGR. S.M. Ortigosa was the recipient of a predoctoral fellowship from CSIC. M.J. Clemente-Moreno thanks the Spanish Ministry of Science and Education for the FPI research fellowship. P. Diaz-Vivanco thanks the Séneca Foundation (Region of Murcia) for his post-doctoral research fellowship. We thank N. Cortadellas, E. Fernandez and A. García (Serveis Cientifico-Tècnics, UB) for their technical assistance and Shirley Burgess for English corrections. We also thank CERBA (Generalitat de Catalunya) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Torné.

Additional information

S. M. Ortigosa and P. Díaz-Vivancos contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00425-010-1210-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortigosa, S.M., Díaz-Vivancos, P., Clemente-Moreno, M.J. et al. Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. Planta 232, 593–605 (2010). https://doi.org/10.1007/s00425-010-1185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1185-y

Keywords

Navigation