Skip to main content
Log in

The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Arabidopsis harbors four UDP-glycosyltransferases that convert hydroxycinnamates (HCAs) to 1-O-β-glucose esters, UGT84A1 (encoded by At4g15480), UGT84A2 (At3g21560), UGT84A3 (At4g15490), and UGT84A4 (At4g15500). To elucidate the role of the individual UGT84A enzymes in planta we analyzed gene expression, UGT activities and accumulation of phenylpropanoids in Arabidopsis wild type plants, ugt mutants and overexpressing lines. Individual ugt84A null alleles did not significantly reduce the gross metabolic flux to the accumulating compounds sinapoylcholine (sinapine) in seeds and sinapoylmalate in leaves. For the ugt84A2 mutant, LC/MS analysis revealed minor qualitative and quantitative changes of several HCA choline esters and of disinapoylspermidine in seeds. Overexpression of individual UGT84A genes caused increased enzyme activities but failed to produce significant changes in the pattern of accumulating HCA esters. For UGT84A3, our data tentatively suggest an impact on cell wall-associated 4-coumarate. Exposure of plants to enhanced UV-B radiation induced the UGT84A-encoding genes and led to a transient increase in sinapoylglucose and sinapoylmalate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SGT:

UDP-glucose:sinapate glucosyltransferase

HCA:

Hydroxycinnamates

OE:

Overexpression

KO:

Knock out

UGT:

UDP-glycosyltransferase

References

  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Bharti AK, Khurana JP (1997) Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB protection mechanisms. Photochem Photobiol 65:765–776

    Article  PubMed  CAS  Google Scholar 

  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalysed by enzymes of a serine carboxypeptidase-like acyltransferase family. Phytochemistry 66:1334–1345

    Article  PubMed  CAS  Google Scholar 

  • Booij-James IS, Dube SK, Jansen MAK, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124:1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. Academic Press, New York, p 6 131–177

    Google Scholar 

  • Chapple CC, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Clauß K, Baumert A, Nimtz M, Milkowski C, Strack D (2008) Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53:802–813

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Döhring T, Köfferlein M, Thiel S, Seidlitz HK (1996) Spectral shaping of artificial UV-B irradiation for vegetation stress research. J Plant Physiol 148:115–119

    Google Scholar 

  • Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  PubMed  CAS  Google Scholar 

  • Iiyama K, Lam T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Jones P, Messner B, Nakajima J-I, Schäffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Meyer K, Viitanen PV, Chapple C, Strack D (2002) Immunolocalization of 1-O-sinapoylglucose:malate sinapoyltransferase in Arabidopsis thaliana. Planta 215:26–32

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  CAS  Google Scholar 

  • Kesy JM, Bandurski RS (1990) Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase). Plant Physiol 94:1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk S, Bandurski RS (1991) Enzymic synthesis of 1-O-(indol-3-ylacetyl)-beta-d-glucose. Purification of the enzyme from Zea mays, and preparation of antibodies to the enzyme. Biochem J 279:509–514

    PubMed  CAS  Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Larsen LM, Olsen O, Plöger A, Sorensen H (1983) Sinapine-O-β-d-glucopyranoside in seeds of Alliaria officinalis. Phytochemistry 22:219–222

    Article  CAS  Google Scholar 

  • Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ou-Lee T-M, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Article  PubMed  CAS  Google Scholar 

  • Lim E-K, Li Y, Parr A, Jackson R, Ashford DA, Bowles DJ (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276:4344–4349

    Article  PubMed  CAS  Google Scholar 

  • Lois R (1994) Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. Planta 194:498–503

    Article  CAS  Google Scholar 

  • Lorenzen M, Racicot V, Strack D, Chapple C (1996) Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of Arabidopsis. Plant Physiol 112:1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Strack D (2000a) Cloning and heterologous expression of a rape cDNA encoding UDP-glucose:sinapate glucosyltransferase. Planta 211:883–886

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Strack D (2000b) Identification of four Arabidopsis genes encoding hydroxycinnamate glucosyltransferases. FEBS Lett 486:183–184

    Article  PubMed  CAS  Google Scholar 

  • Mittasch J, Strack D, Milkowski C (2007) Secondary product glycosyltransferases in seeds of Brassica napus. Planta 225:515–522

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter–terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 216:1003–1012

    PubMed  CAS  Google Scholar 

  • Pagani F, Romussi G (1970) Composition of Cleome punges. III. Principal chemical components of the plant and the synthesis of related compounds of potential pharmacological interest. Farmaco (Sci) 25:727–748

    CAS  Google Scholar 

  • Piber M, Koehler P (2005) Identification of dehydro-ferulic acid-tyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins. J Agric Food Chem 53:5276–5284

    Article  PubMed  CAS  Google Scholar 

  • Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 102:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Quiel JA, Benders J (2003) Glucose conjugation of anthranilate by the Arabidopsis UGT74F2 glucosyltransferase is required for tryptophan mutant blue fluorescence. J Biol Chem 278:6275–6281

    Article  PubMed  CAS  Google Scholar 

  • Reuber S, Bornman JF, Weissenböck G (1996) Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale): light responses of their metabolism and the possible role in UVB protection. Physiol Plant 97:160–168

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, vol 2nd. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am J Bot 83:679–686

    Article  CAS  Google Scholar 

  • Sinlapadech T, Stout J, Ruegger MO, Deak M, Chapple C (2007) The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. Plant J 49:655–668

    Article  PubMed  CAS  Google Scholar 

  • Shirley AM, McMichael CM, Chapple C (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J 28:83–94

    Article  PubMed  CAS  Google Scholar 

  • Strack D, Nurmann G, Sachs G (1980) Sinapine esterase. Part II. Specificity and change of sinapine esterase activity during germination of Raphanus sativus. Z Naturforsch 35c:963–966

    CAS  Google Scholar 

  • Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265:1699–1701

    Article  PubMed  CAS  Google Scholar 

  • Tan KS, Hoson T, Masuda Y, Kamisaka S (1991) Correlation between cell wall extensibility and the content of diferulic and ferulic acids in cell walls of Oryza sativa coleoptiles grown under water and in air. Physiol Plant 83:397–403

    Article  CAS  Google Scholar 

  • Tan KS, Takayuki H, Yoshio M, Seiichiro K (1992) Involvement of cell-wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol 33:103–108

    CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants overexpressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Tkotz N, Strack D (1980) Enzymatic synthesis of sinapoyl-l-malate from 1-sinapoylglucose and l-malate by a protein preparation from Raphanus sativus cotyledons. Z Naturforsch 35c:835–837

    CAS  Google Scholar 

  • van Engelen FA, Moltho JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ (1995) pBinplus: an improved plant transformation vector based on pBin19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

  • Veit M, Pauli GF (1999) Major flavonoids from Arabidopsis thaliana leaves. J Nat Prod 62:1301–1302

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268:412–413

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  PubMed  CAS  Google Scholar 

  • von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134:548–559

    Article  CAS  Google Scholar 

  • Weier D, Mittasch J, Strack D, Milkowski C (2007) The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227:375–385

    Article  PubMed  CAS  Google Scholar 

  • Youhnovski N, Bigler L, Werner C, Hesse M (1998) On-line coupling of high-performance liquid chromatography to atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS and MS/MS). The pollen analysis of Hippeastrum × hortorum (Amaryllidaceae). Helv Chim Acta 81:1654–1671

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Werner Heller (German Research Center for Environmental Health, Neuherberg, Germany) for help with the UV-B exposure experiments and for inspiring discussions during the course of this work. The technical assistance of Franziska Götsch is greatly acknowledged. This study was supported by the Deutsche Forschungsgemeinschaft (Bonn, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Milkowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2008_768_MOESM1_ESM.doc

Analysis of UGT84A1 (At4g15480), UGT84A2 (At3g21560), UGT84A3 (At4g15490) and UGT84A4 (At4g15500) gene expression. RNA was extracted from the plant organs indicated and subjected to first strand RT-PCR. The resulting cDNA was used in Real-Time quantitative PCR with gene-specific primers. Data represent the mean +/-SE of 3 samples. The expression rates were normalized to 18S rRNA transcripts. (DOC 36 kb)

425_2008_768_MOESM2_ESM.doc

RT-PCR analysis of UGT84A1 (At4g15480), UGT84A2 (At3g21560), UGT84A3 (At4g15490) and UGT84A4 (At4g15500) gene expression in Arabidopsis wild-type plants, the individual ugt84A mutants (KO) and overexpressing lines (OE). RNA was extracted from rosette leaves and subjected to RT-PCR with gene-specific primers. Expression of actin is given as control (DOC 3095 kb)

Mass Spectral Data of Compounds 18 (DOC 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meißner, D., Albert, A., Böttcher, C. et al. The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana . Planta 228, 663–674 (2008). https://doi.org/10.1007/s00425-008-0768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0768-3

Keywords

Navigation