Skip to main content
Log in

A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety ‘Norton’ of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety ‘Cabernet Sauvignon’. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in ‘Cabernet Sauvignon’, while two are constitutively upregulated in ‘Norton’. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsiseds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant ‘Norton’ and susceptible ‘Cabernet Sauvignon’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bp:

Base pair

CaMV:

Cauliflower mosaic virus

DC3000:

Pseudomonas syringae pv. tomato strain DC3000

EDS1 :

ENHANCED DISEASE SUSCEPTIBILITY1

FW:

Fresh weight

Hpi:

Hours post inoculation

MeSA:

Methyl salicylate

PM:

Powdery mildew

qPCR:

quantitative Real-time PCR

SA:

Salicylic acid

SNP:

Single-nucleotide polymorphism

Ws-0:

Arabidopsis accession Wassilewskija-0

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306–10311

    Article  CAS  PubMed  Google Scholar 

  • Akkurt M, Welter L, Maul E, Topfer R, Zyprian E (2006) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19:103–111

    Article  Google Scholar 

  • Alleweldt G, Spiegel-Roy P, Reisch BI. Grape (Vitis) (1990) In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops, pp 291–337

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377

    Article  CAS  PubMed  Google Scholar 

  • Chandra-Shekara AC, Navarre D, Kachroo A, Kang H-G, Klessig D, Kachroo P (2004) Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J 40:647–659

    Article  CAS  PubMed  Google Scholar 

  • Chong J, Le Henanff G, Bertsch C, Walter B (2008) Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiol Biochem 46:469–481

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dalbo MA, Weeden NF, Reisch BI (2000) QTL analysis of disease resistance in interspecific hybrid grapes. Acta Hortic 528:215–217

    Google Scholar 

  • Dong XN (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4:309–314

    Article  CAS  PubMed  Google Scholar 

  • Dry IB, Feechan A, Anderson C, Jermakow AM, Bouquet A, Adam-Blondon A-F, Thomas MR (2009) Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Aust J Grape Wine Res. doi:10.1111/j.1755-0238.2009.00076.x

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96:3292–3297

    Article  CAS  PubMed  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  CAS  PubMed  Google Scholar 

  • Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Kortekamp A, Eibach R, Edwards KJ, Töpfer R, Zyprian E (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  CAS  PubMed  Google Scholar 

  • Fung RWM, Qiu WP, Su YC, Schachtman D, Huppert K, Fekete C, Kovacs LG (2007) Gene expression variation in grapevine species Vitis vinifera L. and Vitis aestivalis Michx. Genet Resour Crop Evol 54:1541–1553

    Article  Google Scholar 

  • Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  CAS  PubMed  Google Scholar 

  • Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20:265–277

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  Google Scholar 

  • Hinsch M, Staskawicz BJ (1996) Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact 9:55–61

    CAS  PubMed  Google Scholar 

  • Hoffmann S, Di Gaspero G, Kovacs LG, Howard S, Kiss E, Galbacs R, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438

    Article  CAS  PubMed  Google Scholar 

  • Hu GS, de Hart AKA, Li YS, Ustach C, Handley V, Navarre R, Hwang CF, Aegerter BJ, Williamson VM, Baker B (2005) EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J 42:376–391

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Lodhi M, Ye G-N, Weeden N, Reisch B (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Moroldo M, Paillard S, Marconi R, Fabrice L, Canaguier A, Cruaud C, De Berardinis V, Guichard C, Brunaud V, Le Clainche I, Scalabrin S, Testolin R, Di Gaspero G, Morgante M, Adam-Blondon AF (2008) A physical map of the heterozygous grapevine ‘Cabernet Sauvignon’ allows mapping candidate genes for disease resistance. BMC Plant Biol 8:66

    Article  PubMed  Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046

    Article  CAS  PubMed  Google Scholar 

  • Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  CAS  PubMed  Google Scholar 

  • Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed  Google Scholar 

  • Reisch BI, Pratt C (1996) Grapes. In: Janick J, Moore JN (eds) Fruit breeding. Wiley, New York, pp 297–370

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: –Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

  • Rustérucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  PubMed  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  CAS  PubMed  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis Toll Interleukin-1 Receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  Google Scholar 

  • Venugopal SC, Jeong RD, Mandal MK, Zhu S, Chandra-Shekara AC, Xia Y, Hersh M, Stromberg AJ, Navarre D, Kachroo A, Kachroo P (2009) Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet 5:e1000545

    Article  PubMed  Google Scholar 

  • Wan Y, Schwaninger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136

    Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    Article  CAS  PubMed  Google Scholar 

  • Wirthmueller L, Zhang Y, Jones JDG, Parker JE (2007) Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr Biol 17:2023–2029

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34:768–777

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Laszlo Kovacs for discussions and comments on the manuscript, and for providing mock- and MeSA-treated ‘Cabernet Sauvignon’ leaf tissue for EDL transcript quantification. We thank Daniel Schachtman for providing cDNA libraries of PM-inoculated ‘Norton’ and ‘Cabernet Sauvignon’. This research was supported by Grants from the US Department of Agriculture Cooperative State Research, Education and Extension Service (2006-38901-03542 and 2008-38901-19367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Gassmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Shu, X., Ali, M.B. et al. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant. Planta 231, 1037–1047 (2010). https://doi.org/10.1007/s00425-010-1107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1107-z

Keywords

Navigation