Skip to main content
Log in

Gene expression variation in grapevine species Vitis vinifera L. and Vitis aestivalis Michx.

  • Research Paper
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Comparative microarray (Vitis GeneChip) analysis in young leaves revealed considerable variation in gene expression between Vitis vinifera L. and Vitis aestivalis Michx. Approximately 12% of the genes were differentially expressed in the two grapevine species (P < 0.001). Over 200 probe sets were identified which consistently detected transcripts in one grapevine species, but not in the other. We were unable to identify any broad functional category in which transcript abundance was overall different in any one species. Of the genes expressed only in V. aestivalis leaves, we identified a class IV chitinase which was previously shown by others to have a flower- and fruit-specific expression in V. vinifera. Among the transcripts which were differentially expressed (P < 0.001) in both species, we identified genes encoding key enzymes in flavonoid, monolignol, and proanthocyanindin biosynthesis. Statistical exploration of the data suggested that sequence divergence between the predominantly V. vinifera-derived GeneChip probes and the V. aestivalis cRNA did not confound the hybridization data and that the reliability of the microarray results was similar in the two grapevine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam-Blondon A-F (2006) Genome sequencing projects: strategies and perspectives. Paper presented at the 9th International Conference on Grape Genetics and Breeding, University of Udine, Italy, 2–6 July 2006

  • Adam-Blondon A-F, Aubourg S, Guichard C, Pelsy F, This P, Paillard S, Rathnaparkhe M, Tual S, Dossat C, Wincker P, Weissenbach J (2005) Update of our knowledge on the structure of the grapevine genome. In: Qiu WP, Kovács LG (eds) Proceedings of the International Grape Genomics Symposium, Saint Louis, 2005

  • Affymetrix (2001) Microarray Suite user’s guide. Affymetrix, Santa Clara, California, http://www.affymetrix.com/support/technical/manuals.affx. Cited 22 May 2006

  • Affymetrix (2002) Statistical algorithm description document. Affymetrix, Sanat Clara, California, http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf. Cited 22 May 2006

  • Affymetrix (2004) Affymetrix expression analysis technical manual. Affymetrix, Santa Clara, California, http://www.affymetrix.com/support/technical/manual/expression_manual.affx. Cited 22 May 2006

  • Alleweldt G, Spiegel-Roy P, Reisch BJ (1990) Grapes (Vitis). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops, vol 290. ISHS, Wageningen, The Netherlands, pp 291–337

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aradhya MK, Dangl GS, Prins BH, Bourisqou JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet Res 81:179–192

    Article  CAS  PubMed  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon A-F, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377

    Article  CAS  PubMed  Google Scholar 

  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT (2002) The present and future of the international wine industry. Nature 418:696–699

    Article  CAS  PubMed  Google Scholar 

  • Derckel JP, Legendre L, Audren J, Haye B, Lambert B (1996) Chitinases of the grapevine (Vitis vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Sci 119:31–37

    Article  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins – a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  PubMed  Google Scholar 

  • Ford CM, Boss PK, Hoj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Hemm MR, Ruegger JW, Humphreys MO, Clint C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  CAS  PubMed  Google Scholar 

  • Giannakis C, Bucheli CS, Skene KGM, Robinson SP, Steele SN (1998) Chitinase and β-1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Austr J Grape Wine Res 4:14–22

    Article  CAS  Google Scholar 

  • Goes da Silva F, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597

    Article  CAS  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–401

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Ennos AR, Turner S (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  CAS  PubMed  Google Scholar 

  • Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR (2005) Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid. Genetics 169:2295–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N (2001) Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci 160:543–550

    Article  CAS  PubMed  Google Scholar 

  • Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alteration of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial Kraft pulping. Plant Physiol 119:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunkenbein S, Bellido M, Aharoni A, Elma MJ, Salentijn E, Kaldenhoff R, Coiner HA, Muñoz-Blanco J, Scwhab W (2006) Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. Plant Physiol 140:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuzhdin SV, Wayne ML, Harmon KL, McIntyre LM (2004) Common pattern of evolution of gene expression level and protein sequence in Drosophila. Mol Biol Evol 21:1308–1317

    Article  CAS  PubMed  Google Scholar 

  • Oleksiak MF, Churchill GA, Crawford DL (2002) Variation in gene expression within and among natural populations. Nat Genet 32:261–266

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini L, Geoffroy P, Fritig B, Legrand M (1993) Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco (Nicotiana tabacum L.) leaves by infection or elicitor treatment. Plant Physiol 103:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piquemal J, Chamayou S, Nadaud I, Beckert M, Barriere Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, Goffner D, Pichon M (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocock KF, Hayasaka Y, McCarthy M, Waters EJ (2000) Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J Agric Food Chem 48:1637–1643

    Article  CAS  PubMed  Google Scholar 

  • Reisch BJ, Pratt C (1996) Grapes. In: Janick J, Moore JN (eds) Fruit breeding, vol 2. Wiley and Sons, New York, pp 297–370

  • Reisch BJ, Goodman RN, Martens MH, Weeden NF (1993) The relationship between Norton and Cynthiana, red wine cultivars derived from Vitis aestivalis. Am J Enol Vitic 44:441–444

    CAS  Google Scholar 

  • Ribereau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2000) The handbook of enology, vol 2. Wiley, New York

  • Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmaso M, Faes G, Segala C, Stefanini M, Salakhutdinov I, Zyprian E, Toepfer R, Grando MS, Velasco R (2004) Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as reveled by single nucleotide polymorphisms. Mol Breed 14:385–395

    Article  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (V. vinifera, L.). Plant Mol Biol 24:743–755

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20:955–963

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrels ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  CAS  PubMed  Google Scholar 

  • Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M (2005) Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171:1267–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Ye Z-H, Kneusel RE, Matern U, Varner JE (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6:1427–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zyprian E, Akkurt M, Fischer B, Salakhutdinov I, Welter L, Kortekamp A, Eibach R, Töpfer R (2005) Fundamental research meets practical breeding: genetics of disease resistance in grapevine. In: Qiu WP, Kovács LG (eds) Proceedings of the International Grape Genomics Symposium, Saint Louis, 2005

Download references

Acknowledgements

This research was supported by funds from USDA/CSREES Federal Administration Research Grant 2004-06234 and by funds from Missouri State University. We thank Sunridge Nurseries for their generous gift of ‘Cabernet Sauvignon’ propagation material, Lauren McIntyre for the valuable suggestions, and John Avery, Susanne Howard, and Clayton Dennis for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László G. Kovács.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, R.W.M., Qiu, W., Su, Y. et al. Gene expression variation in grapevine species Vitis vinifera L. and Vitis aestivalis Michx.. Genet Resour Crop Evol 54, 1541–1553 (2007). https://doi.org/10.1007/s10722-006-9146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-9146-9

Keywords

Navigation