Skip to main content
Log in

Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In dicotyledonous plants, nicotianamine synthase (NAS) is thought to play a role in the intercellular transport of iron (Fe). Fe is an essential metal for nitrogen-fixing root nodules of legumes, prompting us to characterize the role of the NAS gene in detail. We previously compared gene-expression profiles in ineffective nodules formed on a Lotus japonicus Fix mutant, sen1, with those in wild-type-effective nodules, and showed that expression of an expressed sequence tag (EST) clone encoding an NAS (EC 2.5.1.43) homologue was repressed in the ineffective nodules. In the present study, two EST clones encoding NAS homologues were found in the EST database. We named them LjNAS1 and LjNAS2. Both were detected as single-copy genes in the L. japonicus genome, and conferred NAS activities in transformed Saccharomyces cerevisiae. LjNAS2 was expressed only in nodules, but LjNAS1 was expressed mainly in leaves, stems, and cotyledons. The level of LjNAS2 transcripts was highest in the nodules 24 days after inoculation with Mesorhizobium loti, and was localized in vascular bundles within the nodules. Expression of LjNAS2 was suppressed in ineffective nodules formed on Fix mutants other than sen1. By contrast, nitrogenase activities of nodules were not influenced in LjNAS2-suppressed plants. We discuss the role of LjNAS2 from the aspect of Fe translocation in nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Cp:

Crossing point

EST:

Expressed sequence tag

NA:

Nicotianamine

NAS:

Nicotianamine synthase

RNAi:

RNA interference

SAM:

S-Adenosylmethionine

References

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54:405–414

    Article  PubMed  Google Scholar 

  • Benes I, Schreiber K, Ripperger H, Kircheise A (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Experimentia 39:261–262

    Article  CAS  Google Scholar 

  • Burton JW, Harlow C, Theil EC (1998) Evidence for reutilization of nodules iron in soybean seed development. J Plant Nutr 21:913–927

    Article  CAS  Google Scholar 

  • David M, Daverran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D (1988) Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671–683

    Article  PubMed  CAS  Google Scholar 

  • Flemetakis E, Kavroulakis N, Quaedvlieg NEM, Spaink HP, Dimou M, Roussis A, Katinakis P (2000) Lotus japonicus contains two distinct ENOD40 genes that are expressed in symbiotic, nonsymbiotic, and embryonic tissues. Mol Plant Microbe Interact 13:987–994

    Article  PubMed  CAS  Google Scholar 

  • Geurts R, Franssen H (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol 112:447–453

    Article  PubMed  CAS  Google Scholar 

  • Herbik A, Koch G, Mock HP, Dushkov D, Czihal A, Thielmann J, Stephan UW, Bäumlein H (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. Eur J Biochem 265:231–239

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi-Anraku H, Kawaguchi M, Koiwa H, Akao S, Syono K (1997) Two ineffective-nodulating mutants of Lotus japonicus: different phenotypes caused by the blockage of endocytotic bacterial release and nodule maturation. Plant Cell Physiol 38:871–881

    CAS  Google Scholar 

  • Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295–304

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26

    Article  PubMed  CAS  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119

    PubMed  CAS  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profile during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    Article  PubMed  CAS  Google Scholar 

  • Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Long SR (2001) Genes and signals in the Rhizobium–legume symbiosis. Plant Physiol 125:69–72

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  CAS  Google Scholar 

  • Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213:967–976

    Article  PubMed  CAS  Google Scholar 

  • Ragland M, Theil EC (1993) Ferritin (mRNA, protein) and iron concentrations during soybean nodules development. Plant Mol Biol 21:555–560

    Article  PubMed  CAS  Google Scholar 

  • Shimomura K, Nomura M, Tajima S, Kouchi H (2006) LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. Plant Cell Physiol 47:1572–1581

    Article  PubMed  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529

    Article  CAS  Google Scholar 

  • Stiller J, Martirani L, Tuppale S, Chian R, Chiurazzi M, Gresshoff P (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365

    Article  CAS  Google Scholar 

  • Suganuma N, Nakamura Y, Yamamoto M, Ohta T, Koiwa H, Akao S, Kawaguchi M (2003) The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Mol Genet Genomics 269:312–320

    Article  PubMed  CAS  Google Scholar 

  • Suganuma N, Yamamoto A, Itou A, Hakoyama T, Banba M, Hata S, Kawaguchi M, Kouchi H (2004) cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant. Mol Plant Microbe Interact 17:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes from Arabidopsis thaliana. Soil Sci Plant Nutr 45:993–1002

    CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  PubMed  CAS  Google Scholar 

  • von Wirén N, Klair S, Bansai S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII: implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Coordination Funds for Promoting Science and Technology of the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Suganuma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figs. 1, 2 (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakoyama, T., Watanabe, H., Tomita, J. et al. Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus . Planta 230, 309–317 (2009). https://doi.org/10.1007/s00425-009-0944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0944-0

Keywords

Navigation