Skip to main content
Log in

Retrotransposon and CRISPR/Cas9-mediated knockout of NOD26 impairs the legume-rhizobia symbiosis

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The multifunctional channel NOD26, identified and extensively studied (both biochemically and biophysically) in soybean, is a major protein component of the symbiosome membrane. The water and ammonia transport activities of NOD26 are thought to be important for nodule development, osmotic balance, and ammonia efflux from the symbiosome. However, the widely accepted relevance of NOD26 in nitrogen-fixing symbiosis has never been explored in planta. Recently, we have reported the emergence of NOD26 in the nitrogen-fixing clade of angiosperms via tandem duplication. Here, we characterized the two copies of NOD26 from Medicago truncatula (Medtr8g087710 and Medtr8g087720) in their transport abilities, and at gene expression and genetic levels. Similar to their homologous soybean gene, MtNOD26 genes encode water and ammonia transport activities in heterologous expression systems. By using multiple transcriptional studies (RT-qPCR, transcriptional fusion and RNA-Seq analyses), we found that the expression of MtNOD26 copies is restricted to the nodule and gradually increases from the bacteria-free meristematic region to the nitrogen-fixation zone. Under nitrogen-limiting soil conditions, the homozygous insertional mutant lines of these two MtNOD26 genes had the same aberrant nodulation phenotype and chlorosis. Similar to uninoculated wild-type plants, inoculated mutants were unable to grow in minimal medium without a nitrogen source. Using the CRISPR/Cas9 system, we have edited the orthologous NOD26 genes in Medicago sativa (alfalfa), generating plants with aberrant nodules, chlorosis and impaired grow under nitrogen-limiting conditions. Collectively, our findings suggest functional equivalence between NOD26 copies and underline a crucial role of NOD26 in symbiotic nitrogen fixation.

Key message

Multiple transcriptional studies and the analysis of loss-of-function mutants for the two Medicago NOD26 genes have allowed concluding that these genes are symbiosisspecific factors required for symbiotic nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The RNA-seq data from M. truncatula (Roux et al., 2014) were obtained from Symbimics (https://iant.toulouse.inra.fr/symbimics).

References

  • Alleva K, Marquez M, Villarreal N, Mut P, Bustamante C, Bellati J, Martínez G, Civello M, Amodeo G (2010) Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit. J Exp Bot 61:3935–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beamer Z, Routray P, Choi W-G, Spangler MK, Lokdarshi A, Roberts DM (2020) The Arabidopsis thaliana NIP2;1 lactic acid channel promotes plant survival under low oxygen stress. Biorxiv 239(7):92

    Google Scholar 

  • Blumwald E, Fortin MG, Rea PA, Verma DP, Poole RJ (1985) Presence of host-plasma membrane type H-ATPase in the membrane envelope enclosing the bacteroids in soybean root nodules. Plant Physiol 78:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottero E, Massa G, González M, Stritzler M, Tajima H, Gómez C, Frare R, Feingold S, Blumwald E, Ayub N, Soto G (2021) Efficient CRISPR/Cas9 genome editing in alfalfa using a public germplasm. Frontiers in Agronomy. https://doi.org/10.3389/fagro.2021.661526

    Article  Google Scholar 

  • Brambilla S, Soto G, Odorizzi A, Arolfo V, McCormick W, Primo E, Giordano W, Jozefkowicz C, Ayub N (2020) Spontaneous mutations in the nitrate reductase gene napC drive the emergence of eco-friendly low-N2O-emitting alfalfa rhizobia in regions with different climates. Microb Ecol 79:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Zhang L-Y, Liu W, Tian Y, Xiong J-S, Wang Y-H, Li R-J, Li H-M, Wen J, Mysore KS, Boller T, Xie Z-P, Staehelin C (2018) Role of the nod factor hydrolase MtNFH1 in regulating nod factor levels during rhizobial infection and in mature nodules of Medicago truncatula. Plant Cell 30:397–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak T, Curtin SJ, Gil-Humanes J, Cegan R, Kono TJY, Konecna E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PM (2015) Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 14:1301–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  CAS  PubMed  Google Scholar 

  • d’Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34:95–106

    Article  PubMed  Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  CAS  PubMed  Google Scholar 

  • Di Giorgio JAP, Bienert GP, Ayub ND, Yaneff A, Barberini ML, Mecchia MA, Amodeo G, Soto GC, Muschietti JP (2016) Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in Arabidopsis thaliana. Plant Cell 28:1053–1077

    Article  PubMed  PubMed Central  Google Scholar 

  • diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M (2020) Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat Commun 11:2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin MG, Morrison NA, Verma DP (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18:3522–3534

    Article  CAS  PubMed  Google Scholar 

  • Frare R, Ayub N, Alleva K, Soto G (2018) The ammonium channel NOD26 is the evolutionary innovation that drives the emergence, consolidation, and dissemination of nitrogen-fixing symbiosis in angiosperms. J Mol Evol 86:554–565

    Article  CAS  PubMed  Google Scholar 

  • Frare R, Stritzler M, Pascuan C, Liebrenz K, Galindo-Sotomonte L, Soto L, Nikel PI, Ayub N (2020) Elimination of GlnKAmtB affects serine biosynthesis and improves growth and stress tolerance of Escherichia coli under nutrient-rich conditions. FEMS Microbiol Lett, Accepted Manuscript. https://doi.org/10.1093/femsle/fnaa1197

    Article  Google Scholar 

  • Galibert F, Finan TM, Long SR, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant-Microbe Interact 10:307–315

    Article  CAS  Google Scholar 

  • Hwang JH, Ellingson SR, Roberts DM (2010) Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett 584:4339–4343

    Article  CAS  PubMed  Google Scholar 

  • Ikaga R, Namekata I, Kotiadis VN, Ogawa H, Duchen MR, Tanaka H, Iida-Tanaka N (2015) Knockdown of aquaporin-8 induces mitochondrial dysfunction in 3T3-L1 cells. Biochem Biophys Rep 4:187–195

    PubMed  PubMed Central  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jozefkowicz C, Frare R, Fox R, Odorizzi A, Arolfo V, Pagano E, Basigalup D, Ayub N, Soto G (2018) Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions. Theor Appl Genet 131:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Kelemen Z, Mai A, Kapros T, Feher A, Gyorgyey J, Waterborg JH, Dudits D (2002) Transformation vector based on promoter and intron sequences of a replacement histone H3 gene. A tool for high, constitutive gene expression in plants. Transgenic Res 11:69–72

    Article  CAS  PubMed  Google Scholar 

  • Loehlin DW, Carroll SB (2016) Expression of tandem gene duplicates is often greater than twofold. Proc Natl Acad Sci 113:5988–5992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magne K, Couzigou J-M, Schiessl K, Liu S, George J, Zhukov V, Sahl L, Boyer F, Iantcheva A, Mysore KS, Wen J, Citerne S, Oldroyd GED, Ratet P (2018) MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity. Plant Physiol 178:295–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masalkar P, Wallace IS, Hwang JH, Roberts DM (2010) Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin. J Biol Chem 285:23880–23888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergaert P, Kereszt A, Kondorosi E (2020) Gene expression in nitrogen-fixing symbiotic nodule cells in Medicago truncatula and other nodulating plants. Plant Cell 32:42–68

    Article  CAS  PubMed  Google Scholar 

  • Molinas SM, Trumper L, Marinelli RA (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Renal Physiol 303:F458-466

    Article  CAS  PubMed  Google Scholar 

  • Nagymihály M, Veluchamy A, Györgypál Z, Ariel F, Jégu T, Benhamed M, Szűcs A, Kereszt A, Mergaert P, Kondorosi É (2017) Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression. Proc Natl Acad Sci USA 114:4543–4548

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110–114

    Article  CAS  PubMed  Google Scholar 

  • Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascuan C, Bottero E, Kapros T, Ayub N, Soto G (2020) pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa. Plant Cell Rep 39:683–685

    Article  CAS  PubMed  Google Scholar 

  • Perez Di Giorgio J, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti JP, Ayub ND (2014) Prediction of aquaporin function by integrating evolutionary and functional analyses. J Membr Biol 247:107–125

    Article  CAS  PubMed  Google Scholar 

  • Pierre O, Engler G, Hokins J, Brau F, Boncompagni E, Herouart D (2013) Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell Environ 36:2059–2070

    CAS  PubMed  Google Scholar 

  • Pislariu CI, Sinharoy S, Torres-Jerez I, Nakashima J, Blancaflor EB, Udvardi MK (2019) The nodule-specific PLAT domain protein NPD1 is required for nitrogen-fixing symbiosis. Plant Physiol 180:1480–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261

    Article  CAS  PubMed  Google Scholar 

  • Routray P, Masalkar PD, Roberts DM (2015) Nodulin intrinsic proteins: facilitators of water and ammonia transport across the symbiosome membrane. In: de Bruijn FJ (ed) Biological nitrogen fixation. John Wiley & Sons Inc, NJ, pp 695–704

    Chapter  Google Scholar 

  • Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77:817–837

    Article  CAS  PubMed  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Diaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8:e63666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393:217–221

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  • Torres-Dorante L, Paredes-Melesio R, Link A, Lammel J (2016) A methodology to develop algorithms that predict nitrogen fertilizer needs in maize based on chlorophyll measurements: a case study in Central Mexico. J Agric Sci 154:705–719

    Article  CAS  Google Scholar 

  • Weaver CD, Crombie B, Stacey G, Roberts DM (1991) Calcium-dependent phosphorylation of symbiosome membrane proteins from nitrogen-fixing soybean nodules : evidence for phosphorylation of nodulin-26. Plant Physiol 95:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by FONCyT (Argentina), Grants PICT-2015-0090, PICT-2017-0484 and PICT-2020-00004 to GS, and by CONICET—PIP-2014-2106 (Argentina) and Biotechnology Program of INTA—PEI115 and PEI116 (Argentina).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: GS. Performed the experiments RF, MS, CG, HT, CP, MPLF, EB, KA and PIN. Analyzed the data: RF, MS, KA, PIN, NA, EB and GS. Wrote the paper: GS.

Corresponding author

Correspondence to Gabriela Soto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frare, R., Stritzler, M., Gómez, C. et al. Retrotransposon and CRISPR/Cas9-mediated knockout of NOD26 impairs the legume-rhizobia symbiosis. Plant Cell Tiss Organ Cult 151, 361–373 (2022). https://doi.org/10.1007/s11240-022-02357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02357-7

Keywords

Navigation