Skip to main content

Advertisement

Log in

The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The cyanelles of glaucocystophytes are probably the most primitive of known extant plastids and the closest to cyanobacteria. Their kidney shape and FtsZ arc during the early stage of division define cyanelle division. In order to deepen and expand earlier results (Planta 227:177–187, 2007), cells of Cyanophora paradoxa were fixed with two different chemical and two different freeze-fixation methods. In addition, cyanelles from C. paradoxa were isolated to observe the surface structure of dividing cyanelles using field emission scanning electron microscopy (FE-SEM). A shallow furrow started on one side of the division plane. The furrow subsequently extended, covering the entire division circle, and then invaginated deeply, becoming clearly visible. The typical FtsZ arc was 2.3–3.4 μm long. This length matches that of the cleavage furrow observed using FE-SEM. The cyanelle cleavage furrows are from one-fourth to one-half of the circumference of the division plane. The shallow furrow that appears on the cyanelle outer surface effectively changes the division plane. Using freeze-fixation methods, the electron-dense stroma and peptidoglycan could be distinguished. In addition, an electron-dense belt structure (the cyanelle ring) was observed inside the leading edge at the cyanelle division plane. The FtsZ arc is located at the division plane ahead of the cyanelle ring. Immunogold-TEM localization shows that FtsZ is located interiorly of the cyanelle ring. The lack of an outer PD ring, together with the arch-shaped furrow, suggests that the mechanical force of the initial (arch shaped) septum furrow constriction comes from inside the cyanelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cy:

Cyanelle

DAPI:

4′,6-Diamidino-2-phenylindole

fts:

Filamentous temperature sensitive

PD ring:

Plastid dividing ring

References

  • Aitken A, Stanier RY (1979) Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J Gen Microbiol 112:219–223

    CAS  Google Scholar 

  • Beech PL, Gilson PR (2000) FtsZ and organelle division in protists. Protist 151:11–16

    Article  PubMed  CAS  Google Scholar 

  • Begg KJ, Donachie WD (1998) Division planes alternate in spherical cells of Escherichia coli. J Bacterial 180(9):2564–2567

    CAS  Google Scholar 

  • Chida Y, Ueda K (1991) Division of chloroplast in a green alga, Trebouxia potteri. Ann Bot 67:435–442

    Google Scholar 

  • Duckett JG, Ligrone R (1993a) Plastid-dividing rings in the liverwort Odontoschisma denudatum (Mart) Dum. (Jungermanniales, Hepaticae). G Bot Ital 127:318–319

    Google Scholar 

  • Duckett JG, Ligrone R (1993b) Plastid-dividing rings in ferns. Ann Bot 72:619–627

    Article  Google Scholar 

  • Erickson HP (1997) FtsZ, a tubulin homolog, in prokaryote cell division. Trends Cell Biol 7:362–367

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH, Wasmann C, Staehelin LA (1983) Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol 71:409–419

    Article  PubMed  CAS  Google Scholar 

  • Goehring NW, Bechwith J (2005) Diverse paths to assembly of bacterial cell division machinery. Curr Biol 15:R514–R526

    Article  PubMed  CAS  Google Scholar 

  • Hall WT, Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa. J Cell Biol 19:551–563

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H (1986) Double ring structure around the constricting neck of dividing plastids of Avena sativa. Protoplasma 135:166–172

    Article  Google Scholar 

  • Hashimoto H (1997) Electron-opaque annular structure girding the constricting isthmus of the dividing chloroplasts of Heterosigma akashiwo (Raphidophyceae, Chromophyta). Protoplasma 197:210–216

    Article  Google Scholar 

  • Hashimoto H (2003) Plastid division: its origins and evolution. Int Rev Cytol 222:63–98

    Article  PubMed  Google Scholar 

  • Hashimoto H, Possingham JV (1989) Division and DNA distribution in ribosome-deficient plastids of barley mutant “albostrians”. Protoplasma 149:20–23

    Article  Google Scholar 

  • Herdman M, Stanier RY (1977) The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Microbiol Lett 1:7–12

    Article  CAS  Google Scholar 

  • Iino M, Hashimoto H (2003) Intermediate features of cyanelle division of Cyanophora paradoxa (Glaucocystophyta) between cyanobacterial and plastid division. J Phycol 39:561–569

    Article  Google Scholar 

  • Kies L (1979) Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana und Glaucocystis nostochinearum. Ber Dtsch Bot Ges 92:445–454

    Google Scholar 

  • Koide T, Yamazaki T, Yamamoto M, Fujishita M, Nomura H, Moriyama Y, Sumiya N, Matsunaga S, Kawano S (2004) Molecular divergence and characterization of two chloroplast division genes, FtsZ1 and FtsZ2, in the unicellular green alga Nannochloris bacillaris (Chlorophyta). J Phycol 40:546–556

    CAS  Google Scholar 

  • Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181:1–41

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa H, Mori T, Takahara M, Miyagishima S, Kuroiwa T (2002) Chloroplast division machinery as revealed by immunofluorescence and electron microscopy. Planta 215:185–190

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Trimble MJ, Brun YV, Jensen GJ (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708

    Article  PubMed  CAS  Google Scholar 

  • Lu CL, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170

    PubMed  CAS  Google Scholar 

  • Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev 6:862–871

    Article  CAS  Google Scholar 

  • Mazouni K, Domain F, Cassier-Chauvat C, Chauvat F (2004) Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Mol Microbiol 52:1145–1158

    Article  PubMed  CAS  Google Scholar 

  • Mignot JP, Joyon L, Pringsheim EG (1969) Quelques particularités structurales de Cyanophora paradoxa Korsch., Protozoaire Flagellé. J Protozool 16(1):138–145

    Google Scholar 

  • Mita T, Kanbe T, Tanaka K, Kuroiwa T (1986) A ring structure around the dividing plane of the Cyanidium caldarium chloroplast. Protoplasma 130:211–213

    Article  Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998) Identification of a triple ring structure involved in plastid division in the primitive red alga Cyanidioschyzon merolae. J Electron Microsc 47:269–272

    Google Scholar 

  • Miyagishima S, Itoh R, Aita S, Kuroiwa H, Kuroiwa T (1999) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209:371–375

    Article  PubMed  CAS  Google Scholar 

  • Miyagishima S, Takahara M, Kuroiwa T (2001a) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13:707–721

    Article  PubMed  CAS  Google Scholar 

  • Miyagishima S, Takahara M, Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2001b) Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13:2257–2268

    Article  CAS  Google Scholar 

  • Nagatani T, Saito S, Sato M, Yamada M (1987) Development of an ultra high resolution scanning electron microscope by means of a field emission source and in-lens system. Scan Microsc 1:901–909

    Google Scholar 

  • Ogawa S, Ueda K, Noguchi T (1995) Division apparatus of the chloroplast in Nannochloris bacillaris (Chlorophyta). J Phycol 31:132–137

    Article  Google Scholar 

  • Oross JW, Possingham JV (1989) Ultrastructural features of the constricted region of dividing plastids. Protoplasma 150:131–138

    Article  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, McAndrew RS (2001) The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol 52:315–333

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps J (1972) Cell division in Cyanophora paradoxa. New Phytol 71:561–567

    Article  Google Scholar 

  • Robertson EJ, Rutherford SM, Leech RM (1996) Characterization of chloroplast division using the Arabidopsis mutant arc5. Plant Physiol 112:149–159

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Nishikawa T, Yamazaki T, Kawano S (2005) Isolation of the plastid FtsZ gene from Cyanophora paradoxa (Glaucocystophyceae, Glaucocystophyta). Phycol Res 53:93–96

    Article  CAS  Google Scholar 

  • Sato M, Kajitani H, Nishikawa T, Kawano S (2007) Conserved relationship between FtsZ and peptidoglycan in the cyanelles of Cyanophora paradoxa similar to that in bacterial cell division. Planta 227:177–187

    Article  PubMed  CAS  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–42

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Löffelhardt W (2002) Protein import into cyanelles. Trends Plant Sci 7:72–77

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288

    PubMed  CAS  Google Scholar 

  • Tewinkel M, Volkmann D (1987) Observations on dividing plastids in the protonema of the moss Funaria hygrometrica Sibth: arrangement of microtubules and filaments. Planta 172:309–320

    Article  Google Scholar 

  • Trench RK, Ronzio GS (1978) Aspects of the relation between Cyanophora paradoxa (Korschikoff) and its endosymbiotic cyanelles Cyanocyta korschikoffiana (Hall and Claus). II. The photosynthetic pigments. Proc R Soc Lond Ser B 202:445–462

    Article  CAS  Google Scholar 

  • Trench RK, Pool RR, Logan M, Engelland A (1978) Aspects of the relationship between Cyanophora paradoxa (Korschikoff) and its endosymbiotic cyanelles Cyanocyta korschikoffiana (Hall and Claus). I. Growth, ultrastructure, photosynthesis and the obligate nature of the association. Proc R Soc Lond Ser B 202:423–443

    CAS  Google Scholar 

  • Westling-Haggstrom B, Elmros B, Normark S, Winblad B (1977) Growth pattern and cell division in Neisseria gonorrhoeae. J Bacteriol 129:333–342

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Hirata and Dr. N. Sumiya of the University of Tokyo for their kind technical advice. This research was supported in part by the River Fund in charge of the Foundation of River and Watershed Environment Management (FOREM), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Kawano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Mogi, Y., Nishikawa, T. et al. The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa . Planta 229, 781–791 (2009). https://doi.org/10.1007/s00425-008-0872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0872-4

Keywords

Navigation