Skip to main content
Log in

Transcript profiling demonstrates absence of dosage compensation in Arabidopsis following loss of a single RPL23a paralog

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Translation of nucleus-encoded messages in plants is conducted by the cytoplasmic ribosome, an enzyme that is comprised of two RNA/protein subunits. In Arabidopsis thaliana, the 81 different ribosomal proteins (r-proteins) of the cytosolic ribosome belong to gene families with multiple expressed members. Given that ribosomes generally contain only one copy of each r-protein, regulatory mechanisms must exist to ensure their stoichiometric accumulation. These mechanisms must be dynamic, allowing for adjustments to ribosome biogenesis to fulfill biological requirements for protein synthesis during development, and following stress induction of global changes in gene expression. In this study, we investigated whether r-protein paralogs are feedback regulated at the transcript level by obtaining a T-DNA knockout of one member, RPL23aB, from the two-member RPL23a family. Expression of the lone functional paralog in this line, RPL23aA, was compared to the expression of both paralogs in wildtype plants under non-stressed, low temperature-, and high light stresses. RPL23aA expression was not upregulated in RPL23aB knockouts to compensate for paralog-loss, and consequently knockouts showed reduced total abundance of RPL23a transcripts. However, no phenotype developed in RPL23aB knockouts, suggesting that this paralog is dispensable under experimental conditions examined, or that compensation by RPL23aA may occur post-transcriptionally. Patterns of RPL23aA and RPL23aB transcript accumulation in wildtype plants suggest that paralogs respond coordinately to developmental and stress stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

r-protein:

Ribosomal protein

rRNA:

Ribosomal RNA

SSU:

Small subunit

LSU:

Large subunit

RNP:

Ribonucleoprotein

mRNA:

Messenger RNA

BKO:

RPL23aB knockout

WT:

Wildtype

PSII:

Photosystem II

PCNA:

Proliferating cell nuclear antigen

CBF:

CRT/DRE binding factor

References

  • Abovich N, Gritz L, Tung L, Rosbash M (1985) Effect of RP51 gene dosage alterations on ribosome synthesis in Saccharomyces cerevisiae. Mol Cell Biol 5:3429–3435

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II - Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Bachand F, Lackner DH, Bahler J, Silver PA (2006) Autoregulation of ribosome biosynthesis by a translational response in fission yeast. Mol Cell Biol 26:1731–1742

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802

    Article  PubMed  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Szick-Miranda K, Chang IF, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415

    Article  PubMed  CAS  Google Scholar 

  • Beckmann R, Bubeck D, Grassucci R, Penczek P, Verschoor A, Blobel G, Frank J (1997) Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278:2123–2126

    Article  PubMed  CAS  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    Article  PubMed  CAS  Google Scholar 

  • Carroll AJ, Heazlewood JL, Ito J, Millar AH (2008) Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomic 7:347–369

    Article  CAS  Google Scholar 

  • Chang I-F, Szick-Miranda K, Pan S, Bailey-Serres J (2005) Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. Plant Physiol 137:848–862

    Article  PubMed  CAS  Google Scholar 

  • Chen J-G, Ullah H, Temple B, Liang J, Guo J, Alonso JM, Ecker JR, Jones AM (2006) RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J Exp Bot 57:2697–2708

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Darbinian N, Gallia GL, Khalili K (2001) Helix-destabilizing properties of the human single-stranded DNA- and RNA-binding protein Pur alpha. J Cell Biochem 80:589–595

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Plant Physiol 147:128–142

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radic Biol Med 28:773–778

    Article  PubMed  CAS  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681

    Article  PubMed  CAS  Google Scholar 

  • Fernandez P, Di Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11

    Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Giannino D, Grugis G, Ticconi C, Florio S, Mele G, Santini L, Cozza R, Bitonti MB, Innocenti A, Mariotti D (2000) Isolation and molecular characterization of the gene encoding the cytoplasmic ribosomal protein S28 in Prunus persica (L.) Batsch. Mol Gen Genet 263:201–212

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gray GR, Savitch LV, Ivanov AC, Huner NPA (1996) Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment of photosynthetic capacity in winter wheat and winter rye. Plant Physiol 110:61–71

    PubMed  CAS  Google Scholar 

  • Gray GR, Hope BJ, Qin XQ, Taylor BG, Whitehead CL (2003) The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging. Physiol Plant 119:365–375

    Article  CAS  Google Scholar 

  • Guarinos E, Santos C, Sánchez A, Qiu D-Y, Remacha M, Ballesta JPG (2003) Tag-mediated fractionation of yeast ribosome populations proves the monomeric organization of the eukaryotic ribosomal stalk structure. Mol Microbiol 50:703–712

    Article  PubMed  CAS  Google Scholar 

  • Hanson CL, Videler H, Santos C, Ballesta JPG, Robinson CV (2004) Mass spectrometry of ribosomes from Saccharomyces cerevisiae - Implications for assembly of the stalk complex. J Biol Chem 279:42750–42757

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Ho LHM, Giraud E, Lister R, Thirkettle-Watts D, Low J, Clifton R, Howell KA, Carrie C, Donald T, Whelan J (2007) Characterization of the regulatory and expression context of an alternative oxidase gene provides insights into cyanide-insensitive respiration during growth and development. Plant Physiol 143:1519–1533

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Oquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low-temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    Article  CAS  Google Scholar 

  • Huner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–264

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AV, Malygin AA, Karpova GG (2006) Eukaryotic ribosomal proteins: Interaction with their own pre-mRNAs and involvement in regulation of their splicing. Mol Biol 40:640–649

    CAS  Google Scholar 

  • Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 52:553–567

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi R, Girke T, Bray EA, Bailey-Serres J (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839

    Article  PubMed  CAS  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  CAS  Google Scholar 

  • Kim J (2007) Perception, transduction, and networks in cold signaling. J Plant Biol 50:139–147

    Article  CAS  Google Scholar 

  • Kim CH, Warner JR (1983) Messenger-RNA for ribosomal-proteins in yeast. J Mol Biol 165:79–89

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Park SW, Chung YS, Chung CH, Kim JI, Lee JH (2004) Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J Exp Bot 55:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    Article  PubMed  CAS  Google Scholar 

  • Kodama Y, Nagaya S, Shinmyo A, Kato K (2007) Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Plant Cell Physiol 48:459–470

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348

    Article  PubMed  CAS  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  CAS  Google Scholar 

  • Lecompte O, Ripp R, Thierry J-C, Moras D, Poch O (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 30:5382–5390

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Thomashow MF (1992) DNA-sequence analysis of a complementary-DNA for cold-regulated Arabidopsis gene COR15 and characterization of the COR15 polypeptide. Plant Physiol 99:519–525

    PubMed  CAS  Google Scholar 

  • Li CX, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci U S A 102:12978–12983

    Article  PubMed  CAS  Google Scholar 

  • Manevski A, Bertoni G, Bardet C, Tremousaygue D, Lescure B (2000) In synergy with various cis-acting elements, plant insterstitial telomere motifs regulate gene expression in Arabidopsis root meristems. FEBS Lett 483:43–46

    Article  PubMed  CAS  Google Scholar 

  • McIntosh KB, Bonham-Smith PC (2005) The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome 48:443–454

    Article  PubMed  CAS  Google Scholar 

  • McIntosh KB, Bonham-Smith PC (2006) Ribosomal protein gene regulation: what about plants? Can J Bot 84:342–362

    Article  CAS  Google Scholar 

  • Menetret JF, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW (2005) Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 348:445–457

    Article  PubMed  CAS  Google Scholar 

  • Morgan DG, Menetret JF, Neuhof A, Rapoport TA, Akey CW (2002) Structure of the mammalian ribosome-channel complex at 17 angstrom resolution. J Mol Biol 324:871–886

    Article  PubMed  CAS  Google Scholar 

  • Nicolai M, Roncato MA, Canoy AS, Rouquie D, Sarda X, Freyssinet G, Robaglia C (2006) Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Plant Physiol 141:663–673

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Wada T, Okada K (2004) A key factor of translation reinitiation, ribosomal protein L24, is involved in gynoecium development in Arabidopsis. Biochem Soc Trans 32:611–613

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Wada T, Yamamoto KT, Okada K (2005) The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 17:2940–2953

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34:868–887

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6:212–234

    Article  PubMed  CAS  Google Scholar 

  • Oquist G, Chow WS, Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem-II. Planta 186:450–460

    Article  CAS  Google Scholar 

  • Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME (2008) Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 135:1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Planta RJ, Mager WH (1998) The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14:471–477

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:185–201

    Article  Google Scholar 

  • Pool MR, Stumm J, Fulga TA, Sinning I, Dobberstein B (2002) Distinct modes of signal recognition particle interaction with the ribosome. Science 297:1345–1348

    Article  PubMed  CAS  Google Scholar 

  • Popescu SC, Tumer NE (2004) Silencing of ribosomal protein L3 genes in N. tabacum reveals coordinate expression and significant alterations in plant growth, development and ribosome biogenesis. Plant J 39:29–44

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L, Paszkowski J (1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J 18:490–499

    Article  PubMed  CAS  Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Saez-Vasquez J, Raynal M, Mezabasso L, Delseny M (1993) Two related, low-temperature-induced genes from Brassica napus are homologous to the human tumor BBC1 (Breast Basic Conserved) gene. Plant Mol Biol 23:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Scarpeci TE, Valle EM (2008) Rearrangement of carbon metabolism in Arabidopsis thaliana subjected to oxidative stress condition: an emergency survival strategy. Plant Growth Regul 54:133–142

    Article  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JHD (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  PubMed  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Shor B, Calaycay J, Rushbrook J, McLeod M (2003) Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe. J Biol Chem 278:49119–49128

    Article  PubMed  CAS  Google Scholar 

  • Spahn CMT, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae- tRNA-ribosome and subunit-subunit interactions. Cell 107:373–386

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008) Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53:42–52

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–561

    Article  PubMed  CAS  Google Scholar 

  • Tremousaygue D, Garnier L, Bardet C, Dabos P, Herve C, Lescure B (2003) Internal telomeric repeats and ‘TCP domain’ protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33:957–966

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci 100:16113–16118

    Article  PubMed  CAS  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  PubMed  CAS  Google Scholar 

  • Vanderhaeghen R, De Clercq R, Karimi M, Van Montagu M, Hilson P, Van Lijsebettens M (2006) Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation. FEBS Lett 580:2630–2636

    Article  PubMed  CAS  Google Scholar 

  • Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13:3378–3388

    PubMed  Google Scholar 

  • Warner JR, Mitra G, Schwindinger WF, Studeny M, Fried HM (1985) Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating messenger-RNA splicing, translational initiation, and protein-turnover. Mol Cell Biol 5:1512–1521

    PubMed  CAS  Google Scholar 

  • Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hookaas P, Offringa R (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a ribosomal protein S5 gene. Development 128:4289–4299

    PubMed  CAS  Google Scholar 

  • Wilkosz R, Schlappi M (2000) A gene expression screen identifies EARLI1 as a novel vernalization-responsive gene in Arabidopsis thaliana. Plant Mol Biol 44:777–787

    Article  PubMed  CAS  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Lee BH, Ishitani M, Lee H, Zhang CQ, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Ling Q, Wang H, Huang H (2008) Ribosomal proteins promote leaf adaxial identity. Development 135:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozier WA (2005) Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). Plant Cell Rep 23:764–769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jacqueline Hulm, Donna Lindsay and Heather Wakely for technical assistance. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory F. Degenhardt.

Electronic Supplementary Material

MOESM1 Table S1 (DOCX 12 kb)

425_2008_765_MOESM2_ESM.tif

MOESM2 Fig. S1 supplementary RT-PCR analysis of homozygous T-DNA insertion lines. Gene specific primers were used to amplify RPL23aA or RPL23aB (Supplemental Table 1; RPL23A1F and RPL23A1R for RPL23aA, RPL23A2F and RPL23A2R for RPL23aB) from total RNA extracts of wildtype plants (WT), putative RPL23aA T-DNA knockout lines SAIL-258-C12 (A1) and SALK-091329.46.50 (A2), and putative RPL23aB T-DNA knockout line SAIL-597-B08 (BKO). For the SAIL-258-C12 image, intervening lanes have been removed. Thirty cycles were used for PCR and amplicons were 437 and 535 bp for RPL23aA and RPL23aB, respectively. Agarose gels were stained with EtBr. (TIFF 845 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degenhardt, R.F., Bonham-Smith, P.C. Transcript profiling demonstrates absence of dosage compensation in Arabidopsis following loss of a single RPL23a paralog. Planta 228, 627–640 (2008). https://doi.org/10.1007/s00425-008-0765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0765-6

Keywords

Navigation