Skip to main content
Log in

Biochemical characterization and expression analysis of lignification in two pear (Pyrus ussuriensis Maxim.) varieties with contrasting stone cell content

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

As lignified stone cells reduce fruit quality, we investigated lignin deposition, phenolic metabolites, and expression of lignin biosynthetic genes during fruit development to elucidate the molecular mechanism of stone cell lignification using histological, biochemical, and transcriptional data from two Ussurian pear varieties (Jianba and Nanguo) with contrasting stone cell content. Lignin content and distribution coincided with stone cell accumulation. As per LC-MS analysis, Jianba exhibited higher levels of lignin monomers and hydroxycinnamates than Nanguo, consistently with lignin amount in each case. However, flavonoid content was much higher in Nanguo. Transcriptional data showed that most monolignol biosynthesis-related genes were particularly upregulated in Jianba during lignin accumulation; especially CCR and LAC, two monolignol biosynthesis-specific genes, were substantially upregulated in Jianba fruits at critical stages. Therefore, differences in stone cell content between “Jianba” and “Nanguo” may result from differential expression of lignin synthase genes located downstream of the lignin biosynthesis pathway. Taken together, our data may provide a deeper understanding of the molecular mechanism for stone cell lignification in pear fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

4CL:

4-coumarate: CoA ligase

CAD:

cinnamyl alcohol dehydrogenase

CCoAOMT:

caffeoyl-CoA O-methyltransferase

CCR:

cinnamoyl-CoA reductase

C4H:

cinnamate 4-hydroxylase

C3H:

p-coumarate 3-hydroxylase

COMT:

caffeic acid O-methyltransferase

DAFB:

days after full bloom

F5H:

ferulate 5-hydroxylase

HCT:

hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase

LAC:

laccase

PAL:

phenylalanine ammonia-lyase

POD:

peroxidase

PCA:

principal component analysis

qRT-PCR:

quantitative real-time PCR

G:

guaiacyl

H:

p-hydroxyphenyl

S:

syringyl

References

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Lapierre C (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23(3):1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19(1):148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  CAS  PubMed  Google Scholar 

  • Bottcher A, Cesarino I, dos Santos AB, Vicentini R, Mayer JLS, Vanholme R, Carmello-Guerreiro SM (2013) Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol 163(4):1539–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Li G, Nie J, Lin Y, Nie F, Zhang J, Xu Y (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic 125(3):374–379

    Article  CAS  Google Scholar 

  • Cao Y, Han Y, Li D, Lin Y, Cai Y (2016a) Systematic analysis of the 4-coumarate: coenzyme a ligase (4CL) related genes and expression profiling during fruit development in the Chinese pear. Genes 7(10):89

    Article  PubMed Central  Google Scholar 

  • Cao Y, Han Y, Meng D, Li D, Jin Q, Lin Y, Cai Y (2016b) Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (Pyrus bretschneideri). Front Plant Sci 7:1874

    PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xiong Y, Li DH, Cheng J, Cao YP, Yan CC, Lin Y (2016) Bioinformatic and expression analysis of the OMT gene family in Pyrus bretschneideri cv. Dangshan Su. Genet Mol Res 15(3):gmr.15038664

    Google Scholar 

  • Cheng X, Li M, Li D, Zhang J, Jin Q, Sheng L, Lin Y (2017) Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol Open 6(11):1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Su X, Abdullah M, Li M, Zhang J, Sun Y, Lin Y (2018a) Molecular characterization, evolution and expression profiling of the Dirigent (DIR) family genes in Chinese white pear (Pyrus bretschneideri). Front Genet 9:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Yan J, Meng X, Zhang W, Liao Y, Ye J, Xu F (2018b) Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba. Acta Physiol Plant 40(1):7

    Article  Google Scholar 

  • Choi JH, Lee SH (2013) Distribution of stone cell in Asian, Chinese, and European pear fruit and its morphological changes. J Appl Bot Food Qual 86(1):185–189

    Google Scholar 

  • Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS One 9(11):e111988

    Article  PubMed  PubMed Central  Google Scholar 

  • Eloy NB, Voorend W, Lan W, Saleme MDLS, Cesarino I, Vanholme R, Nicomedes J (2017) Silencing CHALCONE SYNTHASE in maize impedes the incorporation of tricin into lignin and increases lignin content. Plant Physiol 173(2):998–1016

    Article  CAS  PubMed  Google Scholar 

  • Jia XL, Wang GL, Xiong F, Yu XR, Xu ZS, Wang F, Xiong AS (2015) De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep 5:8259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Su X, Abdullah M, Sun Y, Li G, Cheng X, Jin Q (2018) Effects of different pollens on primary metabolism and lignin biosynthesis in pear. Int J Mol Sci 19(8):2273

    Article  PubMed Central  Google Scholar 

  • Ma C, Zhang H, Li J, Tao S, Qiao X, Korban SS, Wu J (2017) Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Syst Evol 303(1):71–90

    Article  CAS  Google Scholar 

  • Nashima K, Shimizu T, Nishitani C, Yamamoto T, Takahashi H, Nakazono M, Matsumoto S (2013) Microarray analysis of gene expression patterns during fruit development in European pear (Pyrus communis). Sci Hortic 164:466–473

    Article  CAS  Google Scholar 

  • Perkins M, Smith RA, Samuels L (2019) The transport of monomers during lignification in plants: anything goes but how. Curr Opin Biotechnol 56:69–74

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Tao S, Cao Y, Wu J, Zhang H, Huang W, Zhang S (2012) Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chem 134(4):2367–2382

    Article  CAS  PubMed  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9(1):65–83

    Article  CAS  Google Scholar 

  • Ring L, Yeh SY, Hücherig S, Hoffmann T, Blanco-Portales R, Fouche M, Muñoz-Blanco J (2013) Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiol 163(1):43–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2009) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51(1):144–163

    Article  PubMed  Google Scholar 

  • Shinya T, Iwata E, Nakahama K, Fukuda Y, Hayashi K, Nanto K, Kawaoka A (2016) Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition. Front Plant Sci 7:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150(2):621–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao S, Khanizadeh S, Zhang H, Zhang S (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176(3):413–419

    Article  CAS  Google Scholar 

  • Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, Mouradov A (2010) Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 22(10):3357–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gao L, Shan Y, Liu Y, Tian Y, Xia T (2012) Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic 141:7–16

    Article  CAS  Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220

    PubMed  PubMed Central  Google Scholar 

  • Wang YX, Teng RM, Wang WL, Wang Y, Shen W, Zhuang J (2019) Identification of genes revealed differential expression profiles and lignin accumulation during leaf and stem development in tea plant (Camellia sinensis (L.) O. Kuntze). Protoplasma 256(2):359–370

    Article  CAS  PubMed  Google Scholar 

  • Wuyun T, Amo H, Xu J, Ma T, Uematsu C, Katayama H (2015) Population structure of and conservation strategies for wild Pyrus ussuriensis Maxim. in China. PLoS One 10(8):e0133686

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue C, Yao JL, Qin MF, Zhang MY, Allan AC, Wang DF, Wu J (2019a) PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J 17(1):103–117

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Yao JL, Xue YS, Su GQ, Wang L, Lin LK, Wu J (2019b) PbrMYB169 positively regulates lignification of stone cells in pear fruit. J Exp Bot 70(6):1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Yin M, Zhang N, Jin Q, Fang Z, Lin Y, Cai Y (2014) Stone cell distribution and lignin structure in various pear varieties. Sci Hortic 174:142–150

    Article  CAS  Google Scholar 

  • Yoon J, Choi H, An G (2015) Roles of lignin biosynthesis and regulatory genes in plant development. J Integr Plant Biol 57(11):902–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei A, Zamani Z, Fatahi R, Mousavi A, Salami SA, Avila C, Cánovas FM (2016) Differential expression of cell wall related genes in the seeds of soft-and hard-seeded pomegranate genotypes. Sci Hortic 205:7–16

    Article  CAS  Google Scholar 

  • Zhang J, Cheng X, Jin Q, Su X, Li M, Yan C, Cai Y (2017) Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd.) genotypes of different stone cells contents. PLoS One 12(10):e0187114

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Dixon RA (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25(10):3976–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (31701865) and the Research Foundation of Education Bureau of Liaoning Province (LSNFW201705).

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript have directly participated in the planning, execution, and/or analysis of this study.

Corresponding authors

Correspondence to Guodong Du or Deguo Lyu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

The contents of this manuscript have not been copyrighted or published previously.

The contents of this manuscript are not now under consideration for publication elsewhere.

The contents of this manuscript will not be copyrighted, submitted, or published elsewhere while acceptance by Protoplasma.

Additional information

Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, S., Liu, C. et al. Biochemical characterization and expression analysis of lignification in two pear (Pyrus ussuriensis Maxim.) varieties with contrasting stone cell content. Protoplasma 257, 261–274 (2020). https://doi.org/10.1007/s00709-019-01434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01434-7

Keywords

Navigation