Skip to main content
Log in

High frequency (900 MHz) low amplitude (5 V m−1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Using an especially-designed facility, the Mode Stirred Reverberation Chamber, we exposed tomato plants (Lycopersicon esculentum Mill. VFN8) to low level (900 MHz, 5 V m−1) electromagnetic fields for a short period (10 min) and measured changes in abundance of three specific mRNA soon after exposure. Within minutes of electromagnetic stimulation, stress-related mRNA (calmodulin, calcium-dependent protein kinase and proteinase inhibitor) accumulated in a rapid, large and 3-phase manner typical of an environmental stress response. Accumulation of these transcripts into the polysomal RNA also took place (indicating that the encoded proteins were translated) but was delayed (indicating that newly-synthesized mRNA was not immediately recruited into polysomes). Transcript accumulation was maximal at normal Ca2+ levels and was depressed at higher Ca2+, especially for those encoding calcium-binding proteins. Removal of Ca2+ (by addition of chelating agents or Ca2+ channel blocker) led to total suppression of mRNA accumulation. Finally, 30 min after the electromagnetic treatment, ATP concentration and adenylate energy charge were transiently decreased, while transcript accumulation was totally prevented by application of the uncoupling reagent, CCCP. These responses occur very soon after exposure, strongly suggesting that they are the direct consequence of application of radio-frequency fields and their similarities to wound responses strongly suggests that this radiation is perceived by plants as an injurious stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AEC:

Adenylate energy charge

BAPTA:

Bis aminophenoxy ethane tetraacetic acid

EGTA:

Ethyleneglycol tetraacetic acid

EMF:

Electromagnetic field

MSRC:

Mode stirred reverberation chamber

RF:

Radio frequency

RTqPCR:

Real time quantitative PCR

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

References

  • Aldinucci C, Garcia JB, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina GP (2003) The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function. Bioelectromagnetics 24:373–379

    Article  PubMed  Google Scholar 

  • Astumian R (2003) Adiabatic pumping mechanism for ion motive ATPases. Phys Rev Lett 91(118192):1–4

    Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Article  PubMed  CAS  Google Scholar 

  • Beaubois É, Girard S, Lallechere S, Davies E, Paladian F, Bonnet P, Ledoigt G, Vian A (2007) Intercellular communication in plants: evidence for two rapidly systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ 30:834–844

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Boice JD, McLaughlin JR, McLaughlin JK (2002) Epidemiologic studies of cellular telephones and cancer risk. Supplemental Security Income (SSI) Report 6–38

  • Chico JM, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270

    Article  PubMed  CAS  Google Scholar 

  • Coulon C, Blanchard JM (2001) Flux calciques et expression génique. Med Sci 17:969–978

    Google Scholar 

  • Davies E, Larkins BA (1980) Ribosomes. In: Stumpf PK, Conn EE (eds) Plant biochemistry: a comprehensive treatise, vol I. Academic, New York, pp 413-435

    Google Scholar 

  • Davies E, Abe S (1995) Methods for isolation and analysis of polyribosomes. Methods Cell Biol 50:209–222

    PubMed  CAS  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton and gene expression: current hypotheses. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants––neuronal aspects of plant life. Springer, Berlin, pp 309–320

    Google Scholar 

  • Davies E, Vian A, Henry-Vian C, Stankovic B (1997) Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation. Acta Phys Plant 19:571–576

    Article  CAS  Google Scholar 

  • Depège N, Thonat C, Coutand C, Julien JL, Boyer N (1997) Morphological responses and molecular modifications in tomato plants after mechanical stimulation. Plant Cell Physiol 38:1127–1134

    PubMed  Google Scholar 

  • Dobrota C (2006) Energy dependant plant stress acclimation. Rev Environ Sci Bio/Tech 5:243–251

    Article  CAS  Google Scholar 

  • Ferguson IB (2004) The plant response: stress in the daily environment. J Zhejiang Univ Sci 5:129–132

    Article  PubMed  Google Scholar 

  • Feychting M, Ahlbom A, Kheifets L (2005) EMF and health. Annu Rev Public Health 26:65-89

    Article  Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    Article  PubMed  Google Scholar 

  • Galvanovskis J, Sandblom J (1997) Amplication of electromagnetic signals by ion channels. Biophys J 73:3056–3065

    PubMed  CAS  Google Scholar 

  • Goodman R, Blank M (2002) Insights into electromagnetic interaction mechanisms. J Cell Physiol 192:16–22

    Article  PubMed  CAS  Google Scholar 

  • Henry-Vian C, Vian A, Dietrich A, Ledoigt G, Desbiez MO (1995) Changes in the polysomal mRNA population upon wound signal expression or storage in Bidens pilosa. Plant Physiol Biochem 33:337–344

    CAS  Google Scholar 

  • Henry-Vian C, Vian A, Ledoigt G, Desbiez MO (1996) Effect of wounding on nucleotide pools in Bidens pilosa l. Biol Plant 38:191–196

    CAS  Google Scholar 

  • Herde O, Peña-Cortés H,Wasternack C,Willmitzer L, Fisahn J (1999) Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol 119:213–218

    Article  PubMed  CAS  Google Scholar 

  • Heytler PG (1963) Uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry 2:357–361

    Article  PubMed  CAS  Google Scholar 

  • Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    Article  PubMed  CAS  Google Scholar 

  • Julien JL, Desbiez MO, De Jaegher G, Frachisse JM (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa. J Exp Bot 42:131–137

    Article  Google Scholar 

  • Keppler D, Rudigier J, Decker K (1970) Enzymic determination of uracil nucleotides in tissues. Anal Biochem 38:105–114

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • LeBrasseur ND, MacIntosh GC, Pérez-Amador MA, Saitoh M, Green PM (2002) Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J 29:393–403

    Article  PubMed  CAS  Google Scholar 

  • Leitner-Dagan Y, Weiss D (1999) Ca2+, calmodulin and protein dephosphorylation are required for GA-induced gene expression in Petunia corolla. Physiol Plant 105:116–121

    Article  CAS  Google Scholar 

  • Lew R, Spanswick RM (1984) Characterization of the electrogenicity of soybean (Glycine max L.) roots ATP dependence and effect of ATPase inhibitors. Plant Physiol 75:1–6

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Moal J, Le Coz JR, Samain JF, Daniel JY, Bodoy A (1991) Oyster adenylate energy charge: response to levels of food. Aquat Living Resour 4:133–138

    Article  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898

    Article  PubMed  CAS  Google Scholar 

  • Pradet A (1967) Etude des adenosines-5′mono, di-et tri-phosphates dans les tissus végétaux. I-dosage enzymatique. Physiol Vég 5:209–221

    CAS  Google Scholar 

  • Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol Plant 128:283–288

    Article  CAS  Google Scholar 

  • Selga T, Selga M (1996) Response of Pinus sylvestris L. needles to electromagnetic fields. Sci Total Environ 180:65–73

    Article  CAS  Google Scholar 

  • Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    Article  CAS  Google Scholar 

  • Stankovic B, Vian A, Henry-Vian C, Davies E (2000) Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein. Planta 212:60–66

    Article  PubMed  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, White GJ, Demarty M, Thellier M, Ripoll C (2002) SIMS study of the calcium-deprivation step related to epidermal meristem production induced in flax by cold shock or radiation from a GSM telephone. J Trace Microprobe Techn 20:611-623

    Article  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, White GJ, Cole M, Demarty M, Thellier M, Ripoll C. (2004) Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 25:403–407

    Article  PubMed  Google Scholar 

  • Trewavas AJ (2000) Signal perception and transduction. In: Buchanan R, Jones R, Gruissem W (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Texas, pp 930–987

    Google Scholar 

  • Valberg PA, van Deventer TE, Repacholi MH (2007) Base stations and wireless networks: Radiofrequency (RF) exposures and health consequences. Environ Health Perspect 115:416–424

    Article  PubMed  Google Scholar 

  • Vian A, Davies E (2006) Two different wound signals evoke very rapid, systemic CMBP transcript accumulation in tomato. Plant Sign Behav 1:261–264

    Google Scholar 

  • Vian A, Henry-Vian C, Schantz R, Ledoigt G, Frachisse JM, Desbiez MO, Julien JL (1996) Is membrane potential involved in calmodulin gene expression after external stimulation in plants ? FEBS Lett 380:93–96

    Article  PubMed  CAS  Google Scholar 

  • Vian A, Henry-Vian C, Schantz R, Schantz ML, Davies E, Ledoigt G, Desbiez MO (1997) Effect of calcium and calcium-counteracting drugs on the response of Bidens pilosa L. to wounding. Plant Cell Physiol 38:751–753

    CAS  Google Scholar 

  • Vian A, Henry-Vian C, Davies E (1999) Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato. Plant Physiol 121:517–524

    Article  PubMed  CAS  Google Scholar 

  • Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Microwave irradiation affects gene expression in plants. Plant Sign Behav 1:67–70

    CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the French Ministry of Education and Research for the grant awarded to G. Ledoigt from ACI RTM 0005 “Effets biologiques et sanitaires de la téléphonie mobile” and Pr Gendraud (Université Blaise Pascal) for advices on ATP metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Vian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, D., Vian, A., Girard, S. et al. High frequency (900 MHz) low amplitude (5 V m−1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 227, 883–891 (2008). https://doi.org/10.1007/s00425-007-0664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0664-2

Keywords

Navigation