Skip to main content
Log in

BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

MADS-box transcription factors show highly diverse regulatory functions in a wide variety of organisms. In this study, we characterized a MADS-box gene (BpMADS12) from the white birch (Betula platyphylla Suk). This gene is a member of the suppressor of overexpression of CO 1/tomato MADS 3 class of MADS-box genes. We generated lines overexpressing BpMADS12 and found that these had higher levels of lignin compared to that observed in nontransgenic lines. Transcriptome analysis revealed numerous changes in gene expression patterns. In total, 8794 differentially expressed genes were identified, including 5006 upregulated unigenes and 3788 downregulated unigenes in BpMADS-overexpression lines. Differentially expressed genes involved in the pathways for lignin and brassinosteroid biosynthesis were significantly enriched and may have contributed to phenotypic changes. The results from a quantitative RT-PCR analysis were consistent those obtained with the transcriptome analysis. Our transcriptome analysis, in combination with measurement of lignin level, indicated that BpMADS12 promotes lignin synthesis through regulation of key enzymes in response to brassinosteroid signaling. These results suggest that this MADS-box protein is crucial to all subsequent structural events and provide a good foundation for studies aiming to elucidate the developmental mechanisms underlying formation of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2001) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24(4):457–466. doi:10.1111/j.1365-313X.2000.00891.x

    Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8:242. doi:10.1186/1471-2164-8-242

    Article  Google Scholar 

  • Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N (2013) A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25(6):2070–2083. doi:10.1105/tpc.113.113035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decroocq V, Zhu X, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228(1–2):155–160. doi:10.1016/S0378-1119(98)00613-1

    Article  CAS  PubMed  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112:95–103. doi:10.1034/j.1399-3054.2001.1120113.x

    Article  CAS  PubMed  Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant 131:149–158. doi:10.1111/j.1399-3054.2007.00947.x

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164. doi:10.1146/annurev.arplant.54.031902.134921

    Article  CAS  PubMed  Google Scholar 

  • Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, Marsch-Martínez N, de Folter S, Corvera-Poiré A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, Álvarez-Buylla ER (2013a) The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J 32(21):2884–2895. doi:10.1038/emboj.2013.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, Marsch-Martínez N, de Folter S, Corvera-Poiré A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, Álvarez-Buylla ER (2013b) The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J 32(2884–2895):2013. doi:10.1038/emboj.216

    Google Scholar 

  • Gutierrez-Cortines ME, Davies B (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5(11):471–476. doi:10.1016/S1360-1385(00)01761-1

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24(1):23–63. doi:10.1007/BF00225306

    Article  CAS  Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, New York, pp 131–181

    Book  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 99:138–148

    Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198. doi:10.1016/j.gene.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Ralph J, Lu FC, Pilate G, Leple JC, Pollet B, Lapierre C (2002) Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J Biol Chem 277:47412–47419. doi:10.1074/jbc.M208860200

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Aoki S, Ando E, Kitatsuji A, Watanabe A, Ohnishi M, Takahashi K, Inoue SI, Nakamichi N, Tamada Y, Kinoshita T (2015) A flowering integrator, SOC1, affects stomatal opening in Arabidopsis thaliana. Plant Cell Physiol 56(4):640–649. doi:10.1093/pcp/pcu214

    Article  PubMed  Google Scholar 

  • Lemmetyinen J, Hassine M, Elo A, Porali I, Keinonen K, Mäkelä H, Sopanen T (2004) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162. doi:10.1111/j.0031-9317.2004.00303.x

    Article  CAS  PubMed  Google Scholar 

  • Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691. doi:10.1105/tpc.107.054148

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J (2013) A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol. 200(4):1076–1088. doi:10.1111/nph.12427

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Wu DY, Wang ZJ, Liu FF, Liu GF, Jiang J (2015) BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-015-0885-1

    Google Scholar 

  • Lovisetto A, Masiero S, Rahim MA, Mendes MA, Casadoro G (2015) Fleshy seeds form in the basal Angiosperm Magnolia grandiflora and several MADS-box genes are expressed as fleshy seed tissues develop. Evol Dev 17(1):82–91. doi:10.1111/ede.12106

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406(6798):910–913. doi:10.1038/35022611

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi:10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  • Nayar S, Sharma R, Tyagi AK, Kapoor S (2013) Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot 64(14):4239–4253. doi:10.1093/jxb/ert231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi T, Fujioka S, Takatsuto S, Sakurai A, Yoshida S, Li J, Chory J (1999) Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5alpha -cholestan- 3-one in brassinosteroid biosynthesis. Plant Physiol 120:833–840. doi:10.1104/pp.120.3.833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652. doi:10.1093/bioinformatics/btg034

    Article  CAS  PubMed  Google Scholar 

  • Podila GK, Cseke LJ, Sen B, Karnosky DF (2004) Application of aspen MADS-BOX genes to alter reproduction and development in trees. United States patent no. US 2004/0019933 A1

  • Price AM, Nunn M, Oppenheim FG, Van Dyke TE (2011) De novo bone formation after the sinus lift procedure. J Periodontol 82:1245–1255. doi:10.1902/jop.2011.100601

    Article  PubMed  Google Scholar 

  • Qu GZ, Zheng T, Liu G, Wang W, Zang L, Liu H, Yang C (2013) Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco. PLoS One 8(5):e63398. doi:10.1371/journal.pone.0063398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853. doi:10.1074/jbc.M511598200

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008) Lignifi cation: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In: Daayf F, El Hadrami A, Adam L, Ballance GM (eds) Recent advances in polyphenol research. Wiley-Blackwell Publishing, Oxford, pp 36–66

    Chapter  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7(8):1259–1269. doi:10.1105/tpc.7.8.1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Matsuoka M (2006) Characterization of constitutive photomorphoge- nesis and dwarfism homologs in rice (Oryza sativa L.). J Plant Growth Regul 25:245–251. doi:10.1007/s00344-006-0041-6

    Article  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109. doi:10.1038/nbt1173

    Article  PubMed  Google Scholar 

  • Sarkanen KV (1971) Precursors and their polymerization. In: Sarkanen KV, Ludwig CH (eds) Lignins, occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 95–163

    Google Scholar 

  • Shi R, Sun YH, Li QZ, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51(1):144–163. doi:10.1093/pcp/pcp175

    Article  CAS  PubMed  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790. doi:10.1105/tpc.104.024950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden PD, Lefkowitz GK, Ficazzola M, Gitlin J, Lepor H (1998) Identification of genes associated with stromal hyperplasia and glandular atrophy of the prostate by mRNA differential display. Exp Cell Res 245(1):19–26. doi:10.1006/excr.1998.4237

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78(2):203–209. doi:10.1016/0092-8674(94)90291-7

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145. doi:10.1105/tpc.107.055087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB (2014a) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7(11):1653–1669. doi:10.1093/mp/ssu088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB (2014b) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7:1653–1669. doi:10.1093/mp/ssu088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifeng Liu.

Additional information

Project funding: This work was financially supported by the National Science and Technology Program of China during the 12th Five-Year Plan Period (No. 2013AA102704) and the National Natural Science Foundation of China (NO: 31200510).

The online version is available at http://www.springerlink.com

Corresponding editor: Yu Lei

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, Y., Wang, Z. et al. BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis. J. For. Res. 27, 1111–1120 (2016). https://doi.org/10.1007/s11676-016-0229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0229-y

Keywords

Navigation