Skip to main content

The Molecular Physiology and Regulation of Aluminum Resistance in Higher Plants

  • Chapter
Aluminum Stress Adaptation in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 24))

Abstract

Plants have evolved a variety of aluminum (Al)-resistance mechanisms that are regulated by complex biological systems. Two distinct categories of Al resistance were proposed in the late 1980s, namely “exclusion” of Al from the symplasm and “internal tolerance.” Exclusion mechanisms reduce the amount of rhizotoxic Al (Al3+) in the symplasm of cells and internal tolerance mechanisms reduce Al toxicity, and the resulting damage occurs once Al has entered the cytosol. Since these concepts were introduced, many studies have identified physiological and genetic mechanisms of Al resistance that provide support for “exclusion” and “internal tolerance” at the molecular level. Excretion of organic anions (OA) from root cells, which detoxify Al by chelation, appears to be the most common mechanism of Al exclusion in plants. In addition, modification of the chemical properties of the plasma membrane and cell wall contribute to a reduction of Al rhizotoxicity in the root tips. Sequestration of Al in the vacuole, translocation of Al to the shoot, and enhanced capacity to cope with Al-inducible reactive oxygen species are important mechanisms of internal Al tolerance. Various genes that control these traits, such as genes encoding OA transporters, have been identified in plants. Studies of the transcriptional regulation of these genes by STOP1/ART1-type zinc finger transcription factors show that multiple Al-resistance genes are likely co-regulated by the same signal transduction pathway in different plant species. In addition, regulation of Al-resistance mechanisms is coordinated with resistance to other stress factors associated with the acid soil syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin FD, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M (2014) New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7:709–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1278

    Article  Google Scholar 

  • Basu U, Southron JL, Stephens JL, Taylor GJ (2004) Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol Genet Genom 271:627–637

    Article  CAS  Google Scholar 

  • Bhuja P, McLachlan K, Stephens J, Taylor GJ (2004) Accumulation of 1,3-β-D-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. Plant Cell Physiol 45:543–549

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma J (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  • Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ (2013) WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum‐induced malate secretion in Arabidopsis. Plant J 76:825–835

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkemeier I, König A, Heard W, Nunes-Nesi A, Pham PA, Leister D, Fernie AR, Sweetlove LJ (2013) Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in Arabidopsis leaves. Plant Physiol 162:239–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. In: Hatfield JL, Stewart BA (eds) Limitations to plant root growth, vol 19, Advances in soil science. Springer, New York, NY, pp 97–149

    Chapter  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Prieto P, de Andrade MR, Rodrigues-Pousada C, Guedes-Pinto H, Martins-Lopes P (2013) Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol 13:134

    Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001a) Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett 205:231–236

    Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001b) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Yamaji N, Chen Z, Ma JF (2012) A tonoplast‐localized half‐size ABC transporter is required for internal detoxification of aluminum in rice. Plant J 69:857–867

    Article  CAS  PubMed  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104:9900–9905

    Article  PubMed Central  PubMed  Google Scholar 

  • Iuchi S, Kobayashi Y, Koyama H, Kobayashi M (2008) STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis. Plant Signal Behav 3:128–130

    Article  PubMed Central  PubMed  Google Scholar 

  • Kinraide TB (1994) Use of a Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiol 106:1583–1592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci 54:323–333

    Article  CAS  Google Scholar 

  • Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer. J Exp Bot 56:1853–1865

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Furuta Y, Ohno T, Hara T, Koyama H (2005) Quantitative trait loci controlling aluminium tolerance in two accessions of Arabidopsis thaliana (Landsberg erecta and Cape Verde Islands). Plant Cell Environ 28:1516–1524

    Article  CAS  Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Pineros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Sugimoto M, Lakshmanan V, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013a) Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol 162:732–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Watanabe T, Shaff JE, Ohta H, Kochian L, Wagatsuma T, Kinraide TB, Koyama H (2013b) Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions. Plant Physiol 163:180–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M, Zhao C, Tanveer T, Ganesan M, Kobayashi M, Koyama H (2013c) STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322

    Article  PubMed  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Takita E, Kawamura A, Hara T, Shibata D (1999) Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol 40:482–488

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Volume I. Chilling, freezing, and high temperature stresses. Volume II. Water, radiation, salt, and other stresses. Academic Press, New York, NY

    Google Scholar 

  • Li JY, Liu J, Dong D, Jia X, McCouch SR, Kochian LV (2014) Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci U S A 111:6503–6508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang C, Pineros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ligaba A, Kochian L, Piñeros M (2009) Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J 60:411–423

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  CAS  PubMed  Google Scholar 

  • Liu MY, Chen WW, Xu JM, Fan W, Yang JL, Zheng SJ (2013) The role of VuMATE1 expression in aluminium-inducible citrate secretion in rice bean (Vigna umbellata) roots. J Exp Bot 64:1795–1804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot. doi:10.1093/jxb/eru508

    Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    Article  PubMed Central  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang Y, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  CAS  PubMed  Google Scholar 

  • Moseyko N, Feldman LJ (2001) Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–563

    Article  CAS  PubMed  Google Scholar 

  • Mujika J, Ruiperez F, Infante I, Ugalde J, Exley C, Lopez X (2011) Pro-oxidant activity of aluminum: stabilization of the aluminum superoxide radical ion. J Phys Chem A 115:6717–6723

    Article  CAS  PubMed  Google Scholar 

  • Nezames CD, Ochoa V, Larsen PB (2012a) Mutational loss of Arabidopsis SLOW WALKER2 results in reduced endogenous spermine concomitant with increased aluminum sensitivity. Funct Plant Biol 40:67–78

    Article  Google Scholar 

  • Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012b) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24:608–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Satoshi I, Koyama H (2013) Characterization of AtSTOP1 orthologous genes in tobacco and other plant species. Plant Physiol 162:1937–1946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Sahoo L, Katsuhara M, Matsumoto H (2013) Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells. Mol Biotechnol 54:551–563

    Article  CAS  PubMed  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruipérez F, Mujika J, Ugalde J, Exley C, Lopez X (2012) Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe (III) to Fe (II). J Inorg Biochem 117:118–123

    Article  PubMed  Google Scholar 

  • Ryan P, Kinraide T, Kochian L (1993) Al3+-Ca2+ interactions in aluminum rhizotoxicity. Planta 192:98–103

    Article  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Tsuchiya Y, Ariyoshi M, Ryan PR, Furuichi T, Yamamoto Y (2014) A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes. Plant Cell Physiol 55:2126–2138

    Article  PubMed  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawaki Y, Kihara-Doi T, Kobayashi Y, Nishikubo N, Kawazu T, Kobayashi Y, Koyama H, Sato S (2013) Characterization of Al-responsive citrate excretion and citrate-transporting MATEs in Eucalyptus camaldulensis. Planta 237:979–989

    Article  CAS  PubMed  Google Scholar 

  • Sawaki Y, Kobayashi Y, Kihara-Doi T, Nishikubo N, Kawazu T, Kobayashi M, Kobayashi Y, Iuchi S, Koyama H, Sato S (2014) Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. Plant Sci 223:8–15

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163

    Article  PubMed Central  CAS  Google Scholar 

  • Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F, De Lorenzo G, Mattei B, Bellincampi D (2006) Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol 141:557–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sumner M, Shahandeh H, Bouton J, Hammel J (1986) Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Sci Soc Am J 50:1254–1258

    Article  CAS  Google Scholar 

  • Taylor GJ (1987) Exclusion of metals from the symplasm: a possible mechanism of metal tolerance in higher plants. J Plant Nutr 10:1213–1222

    Article  CAS  Google Scholar 

  • Taylor GJ (1988) The physiology of aluminum phytotoxicity. In: Sigel H (ed) Aluminum and its role in biology, vol 24, Metal ions in biological systems. Marcel Dekker, New York, NY, pp 123–163

    Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiol 167:991–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trejo-Téllez L, Stenzel R, Gómez-Merino F, Schmitt J (2010) Transgenic tobacco plants overexpressing pyruvate phosphate dikinase increase exudation of organic acids and decrease accumulation of aluminum in the roots. Plant Soil 326:187–198

    Article  Google Scholar 

  • Wenzl P, Patino GM, Chaves AL, Mayer JE, Rao IM (2001) The high level of aluminum resistance in signal grass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol 125:1473–1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia J, Yamaji N, Ma JF (2013) A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J 76:345–355

    CAS  PubMed  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in Rice. Plant Cell 21:3339–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:1333–1339

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi-Shinozaki K, Tokizawa M, Koyama H (2011) Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biol 11:39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al‐inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Article  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat: I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Koyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koyama, H., Kobayashi, Y., Panda, S.K., Taylor, G.J. (2015). The Molecular Physiology and Regulation of Aluminum Resistance in Higher Plants. In: Panda, S., Baluška, F. (eds) Aluminum Stress Adaptation in Plants. Signaling and Communication in Plants, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-19968-9_9

Download citation

Publish with us

Policies and ethics