Skip to main content

Advertisement

Log in

Protein interaction networks in plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Protein–protein interactions are fundamental to virtually every aspect of cellular functions. With the development of high-throughput technologies of both the yeast two-hybrid system and tandem mass spectrometry, genome-wide protein-linkage mapping has become a major objective in post-genomic research. While at least partial “interactome” networks of several model organisms are already available, in the plant field, progress in this respect is slow. However, even with comprehensive protein interaction data still missing, substantial recent advance in the graph-theoretical functional interpretation of complex network architectures might pave the way for novel approaches in plant research. This article reviews current progress and discussions in network biology. Emphasis is put on the question of what can be learned about protein functions and cellular processes by studying the topology of complex protein interaction networks and the evolutionary mechanisms underlying their development. Particularly the intermediate and local levels of network organization—the modules, motifs and cliques—are increasingly recognized as the operational units of biological functions. As demonstrated by some recent results from systematic analyses of plant protein families, protein interaction networks promise to be a valuable tool for a molecular understanding of functional specificities and for identifying novel regulatory components and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13:193–202

    Article  PubMed  CAS  Google Scholar 

  • Arita M (2005) Scale-freeness and biological networks. J Biochem (Tokyo) 138:1–4

    CAS  Google Scholar 

  • Bader GD, Hogue CW (2002) Analyzing yeast protein–protein interaction data obtained from different sources. Nat Biotechnol 20:991–997

    Article  PubMed  CAS  Google Scholar 

  • Bader JS, Chaudhuri A, Rothberg JM, Chant J (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22:78–85

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Barabasi AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:60–69

    Article  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915–924

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Bey M, Burglin TR, Saedler H, Theissen G (2002) Ancestry and diversity of BEL1-like homeobox genes revealed by gymnosperm (Gnetum gnemon) homologs. Dev Genes Evol 212:452–457

    Article  PubMed  CAS  Google Scholar 

  • Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW (2001) The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13:2455–2470

    Article  PubMed  CAS  Google Scholar 

  • Berg J, Lassig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51

    Article  PubMed  Google Scholar 

  • Bhatt AM, Etchells JP, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105

    PubMed  CAS  Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865

    Article  PubMed  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  PubMed  CAS  Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  PubMed  CAS  Google Scholar 

  • Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14:1324–1332

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    PubMed  CAS  Google Scholar 

  • Cork JM, Purugganan MD (2004) The evolution of molecular genetic pathways and networks. Bioessays 26:479–484

    Article  PubMed  CAS  Google Scholar 

  • Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14(Suppl 2):R171–R181

    Article  PubMed  CAS  Google Scholar 

  • Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J 15:4330–4343

    PubMed  CAS  Google Scholar 

  • Dziembowski A, Seraphin B (2004) Recent developments in the analysis of protein complexes. FEBS Lett 556:1–6

    Article  PubMed  CAS  Google Scholar 

  • Fields S (2005) High-throughput two-hybrid analysis. FEBS J 272:5391–5399

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM (2000) Homology a personal view on some of the problems. Trends Genet 16:227–231

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Immink RG, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed  CAS  Google Scholar 

  • Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C et al (2005) Protein interaction mapping: a Drosophila case study. Genome Res 15:376–384

    Article  PubMed  CAS  Google Scholar 

  • Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat Genet 37:351–352

    Article  PubMed  CAS  Google Scholar 

  • Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752

    Article  PubMed  CAS  Google Scholar 

  • Gagneur J, Krause R, Bouwmeester T, Casari G (2004) Modular decomposition of protein–protein interaction networks. Genome Biol 5:R57

    Article  PubMed  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    PubMed  CAS  Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Bussow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 15:853–865

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci USA 100:4372–4376

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han JD, Hao T, Berriz GF, Bertin N, Huang J, Chuang LS, Li N, Mani R, Hyman AA, Sonnichsen B, Echeverri CJ, Roth FP, Vidal M, Piano F (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436:861–865

    Article  PubMed  CAS  Google Scholar 

  • Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908–4912

    Article  PubMed  CAS  Google Scholar 

  • Halperin I, Wolfson H, Nussinov R (2004) Protein–protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Structure (Camb) 12:1027–1038

    Article  CAS  Google Scholar 

  • Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93

    Article  PubMed  CAS  Google Scholar 

  • Han JD, Dupuy D, Bertin N, Cusick ME, Vidal M (2005) Effect of sampling on topology predictions of protein–protein interaction networks. Nat Biotechnol 23:839–844

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  • Huang TW, Tien AC, Huang WS, Lee YC, Peng CL, Tseng HH, Kao CY, Huang CY (2004) POINT: a database for the prediction of protein–protein interactions based on the orthologous interactome. Bioinformatics 20:3273–3276

    Article  PubMed  CAS  Google Scholar 

  • Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377

    PubMed  CAS  Google Scholar 

  • Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268:598–606

    PubMed  CAS  Google Scholar 

  • Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y (2000) Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  PubMed  CAS  Google Scholar 

  • Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198

    Article  PubMed  CAS  Google Scholar 

  • Keller EF (2005) Revisiting “scale-free” networks. Bioessays 27:1060–1068

    Article  PubMed  Google Scholar 

  • Kersten B, Burkle L, Kuhn EJ, Giavalisco P, Konthur Z, Lueking A, Walter G, Eickhoff H, Schneider U (2002) Large-scale plant proteomics. Plant Mol Biol 48:133–141

    Article  PubMed  CAS  Google Scholar 

  • Keskin O, Ma B, Nussinov R (2005) Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345:1281–1294

    Article  PubMed  CAS  Google Scholar 

  • Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20:1963–1977

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Loomis WF, Sternberg PW (1995) Genetic networks. Science 269:649

    PubMed  CAS  Google Scholar 

  • Martinez-Castilla LP, Alvarez-Buylla ER (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci USA 100:13407–13412

    Article  PubMed  CAS  Google Scholar 

  • Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M (2001) Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs”. Genome Res 11:2120–2126

    Article  PubMed  CAS  Google Scholar 

  • von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403

    Article  PubMed  CAS  Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  • Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein–protein interactions. Proc Natl Acad Sci USA 102:10930–10935

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 437:56–60

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein–protein associations in the regulation of Knox gene function. Plant J 27:13–23

    Article  PubMed  CAS  Google Scholar 

  • Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300:2097–2101

    Article  PubMed  CAS  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    PubMed  CAS  Google Scholar 

  • Pastor-Satorras R, Smith E, Sole RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares J, The REGIA Consortium (2002) REGIA, an EU project on functional genomics of transcription factors from Arabidopsis thaliana. Comp Funct Genomics 3(2):102–108

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Leal JB, Teichmann SA (2005) Novel specificities emerge by stepwise duplication of functional modules. Genome Res 15:552–559

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54:49–57

    Article  PubMed  CAS  Google Scholar 

  • Piehler J (2005) New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15:4–14

    Article  PubMed  CAS  Google Scholar 

  • Poyatos JF, Hurst LD (2004) How biologically relevant are interaction-based modules in protein networks? Genome Biol 5:R93

    Article  PubMed  Google Scholar 

  • Przulj N, Corneil DG, Jurisica I (2004) Modeling interactome: scale-free or geometric? Bioinformatics 20:3508–3515

    Article  PubMed  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM (2005) Probabilistic model of the human protein–protein interaction network. Nat Biotechnol 23:951–959

    Article  PubMed  CAS  Google Scholar 

  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34:753–767

    Article  PubMed  CAS  Google Scholar 

  • Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100:1128–1133

    Article  PubMed  CAS  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM (2001) The draft sequences. Comparing species. Nature 409:820–821

    Article  PubMed  CAS  Google Scholar 

  • Smith HM, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Huynen MA (2004) Quantifying modularity in the evolution of biomolecular systems. Genome Res 14:391–397

    Article  PubMed  CAS  Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100:12123–12128

    Article  PubMed  CAS  Google Scholar 

  • Stanyon CA, Liu G, Mangiola BA, Patel N, Giot L, Kuang B, Zhang H, Zhong J, Finley RL (2004) A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol 5:R96

    Article  PubMed  Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  PubMed  CAS  Google Scholar 

  • Szathmary E, Jordan F, Pal C (2001) Molecular biology and evolution. Can genes explain biological complexity? Science 292:1315–1316

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Yi TM, Doyle J (2005) Some protein interaction data do not exhibit power law statistics. FEBS Lett 579:5140–5144

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Article  PubMed  CAS  Google Scholar 

  • Teichmann SA, Babu MM (2004) Gene regulatory network growth by duplication. Nat Genet 36:492–496

    Article  PubMed  CAS  Google Scholar 

  • Teichmann SA, Park J, Chothia C (1998) Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. Proc Natl Acad Sci USA 95:14658–14663

    Article  PubMed  CAS  Google Scholar 

  • Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A, Riddle DL, Ruvkun G, Vidal M (2004) Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. Mol Cell 13:469–482

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2002) Secret life of genes. Nature 415:741

    PubMed  Google Scholar 

  • Tornow S, Mewes HW (2003) Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 31:6283–6289

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  • Vergassola M, Vespignani A, Dujon B (2005) Cooperative evolution in protein complexes of yeast from comparative analyses of its interaction network. Proteomics 5:3116–3119

    Article  PubMed  CAS  Google Scholar 

  • Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22:6321–6335

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292

    PubMed  CAS  Google Scholar 

  • Wagner A (2003) How the global structure of protein interaction networks evolves. Proc Biol Sci 270:457–466

    Article  PubMed  CAS  Google Scholar 

  • Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    Article  PubMed  CAS  Google Scholar 

  • Wall DP, Fraser HB, Hirsh AE (2003) Detecting putative orthologs. Bioinformatics 19:1710–1711

    Article  PubMed  CAS  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • Wolberger C (1999) Multiprotein–DNA complexes in transcriptional regulation. Annu Rev Biophys Biomol Struct 28:29–56

    Article  PubMed  CAS  Google Scholar 

  • Wuchty S (2004) Evolution and topology in the yeast protein interaction network. Genome Res 14:1310–1314

    Article  PubMed  CAS  Google Scholar 

  • Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5:444–449

    Article  PubMed  CAS  Google Scholar 

  • Wuchty S, Oltvai ZN, Barabasi AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087

    Article  PubMed  CAS  Google Scholar 

  • Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc Natl Acad Sci USA 101:5934–5939

    Article  PubMed  CAS  Google Scholar 

  • Yook SH, Oltvai ZN, Barabasi AL (2004) Functional and topological characterization of protein interaction networks. Proteomics 4:928–942

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M (2004) Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res 14:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Gaut BS, Vision TJ (2001) Gene duplication and evolution. Science 293:1551

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Francesco Salamini, Peter Schreier and Martin Hülskamp for constant support and helpful discussions and Klaus Richter for help with the bioinformatic network analysis. I apologize to those colleagues whose work was not cited because of space limitations. The work was supported by the Arabidopsis Functional Genomics Network (DFG) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim F. Uhrig.

Appendix Biological networks and graph theory: some basics

Appendix Biological networks and graph theory: some basics

Biological networks are graphical visualizations of elements such as proteins or genes, depicted in the graph as nodes or vertices, connected to each other by links or edges representing their functional interactions. The most basic characteristic of a node in a network is its degree k, which is defined as the number of links it has to other nodes. In protein interaction networks, links usually are undirected. In other complex networks, like for example gene regulatory networks, links can be directional; here the degree of a node is divided into incoming degree, comprising the links that point towards that node, and outgoing degree, denoting links pointing away from it. An elementary measure to characterize a network’s topology is the degree distribution P(k), obtained by counting the number of nodes having the same degree N(k) divided by the total number of nodes (N). P(k) gives the probability of a node having exactly the degree k. The degree distribution can be used to classify networks. A Poisson distribution, for example, is indicative of random networks. An intriguing finding of recent years is that in very different “real” complex networks like the Internet, co-authorships, the road map of the USA and a number of biological networks, the degree distribution follows a power law (P(k)∼k γ). Here the degree distribution P(k) is proportional to k γ with the degree exponent γ ranging between 2 and 3. This means that the large majority of nodes have only one or very few links, while a small but significant number of nodes, the so-called “hubs”, are connected to many other nodes. According to Barabasi and Albert (1999), this type of networks is called “scale-free”. Hubs play a crucial role in the large-scale organization of scale-free networks and contribute to their special properties like the remarkable robustness against random perturbations (Jeong et al. 2001; Han et al. 2004).

Another elementary feature used to describe and classify network architecture and the relative position of particular nodes in the network is the path length, which is defined as the number of steps that have to be taken to reach from one node to another. The shortest path and the mean path length, defined as the average over the shortest paths of every node to every other node, are of special interest and are measures of the diameter of a network. Scale-free networks have ultra-short mean path lengths and therefore have so-called “small-world” properties, a characteristic of random networks.

Analysis of biological and other complex networks revealed, in addition to the scale-free characteristic, a high degree of clustering which is not found in random networks but rather is an attribute of regular networks. In order to mathematically quantify clustering, Watts and Strogatz (1998) introduced a clustering coefficient C i , defined as the number of links existing between the neighbours of a node i divided by the maximum number of links possible between these neighbours: C i =2n i /k(k−1), where n is the number of links connecting the k neighbours. A high clustering coefficient means that, if for example a node A is connected to B and C, there is a high probability that B has a direct link to C or, in other words, A, B and C form a triangle.

A high clustering coefficient or likewise a high density of triangles is indicative of a “community structure” or a modular organization, which is another general property of complex networks. Modules emerging from network representations are clusters of nodes highly interconnected amongst each other, while being only loosely connected to the rest of the network. In biological networks, functional annotation of these separable subgraphs supports the view that these structures reflect the modularity of cellular functions. The basic building blocks of such functional modules are small patterns termed network motifs that recur at frequencies significantly higher than those found in equivalent randomized networks. These motifs are simple geometrical figures like triangles, squares or pentagons with a certain degree of internal connections. Completely connected subgraphs/motifs, i.e. geometrical structures in which every node is linked to every other node, is called clique. Significant overrepresentation of certain motifs or cliques has been shown to be of functional relevance and might be used to functionally distinguish different types of networks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhrig, J.F. Protein interaction networks in plants. Planta 224, 771–781 (2006). https://doi.org/10.1007/s00425-006-0260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0260-x

Keywords

Navigation