Skip to main content

Advertisement

Log in

Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

NADH-dependent NO scavenging in barley extracts is linked to hemoglobin (Hb) expression and is inhibited by SH-reagents. Barley Hb has a single cysteine residue. To determine whether this cysteine was critical for NO scavenging, barley Hb and a mutated version, in which the single Cys79 was replaced by Ser, were over-expressed in Escherichia coli and purified to near homogeneity. The purified proteins exhibited very low NO-scavenging activity (12–14 nmol min−1 mg−1 protein) in the presence of NADH or NADPH. This activity was insensitive to SH-reagents. Addition of an extract from barley roots to either of the purified proteins resulted in high NADH-dependent NO turnover in a reaction that was sensitive to SH-reagents. A protein was purified from barley roots and identified by mass-spectrometry analysis as a cytosolic monodehydroascorbate reductase. It efficiently supported NADH-dependent NO scavenging in the presence of either native or mutated barley Hb. Ascorbate strongly facilitated the rate of metHb reduction. The K m for Hb was 0.3 μM, for ascorbate 0.6 mM and for NADH 4 μM. The reaction in the presence of monodehydroascorbate reductase was sensitive to SH-reagents with either form of the Hb. We conclude that metHb reduction and NO turnover do not involve direct participation of the Cys79 residue of barley Hb. NO scavenging is facilitated by monodehydroascorbate reductase mediating a coupled reaction involving ferric Hb reduction in the presence of ascorbate and NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEANO:

2-(N, N-diethylamino)-diazenolate-2-oxide

DTT:

Dithiothreitol

metHb:

Methemoglobin (ferric hemoglobin)

rHb:

Recombinant non-mutated barley Hb

mutHb:

Recombinant barley Hb with replacement of Cys79 by Ser

MDHA:

Monodehydroascorbate (ascorbate free radical)

MDHAR:

Monodehydroascorbate reductase

NEM:

N-ethylmaleimide

pHMB:

p-Hydroxymercuribenzoate

SNP:

Sodium nitroprusside

TCEP:

Tris(2-carboxyethyl)phosphine

References

  • Becana M, Klucas RV (1990) Enzymatic and nonenzymatic mechanisms for ferric leghemoglobin reduction in legume root nodules. Proc Natl Acad Sci USA 87:7295–7299

    Article  PubMed  CAS  Google Scholar 

  • Bérczi A, Møller IM (1998) NADH-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol 116:1029–1036

    Article  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brunori M, Giuffré A, Nienhaus K, Nienhaus GU, Scandurra FM, Vallone B (2005) Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc Natl Acad Sci USA 102:8483–8488

    Article  PubMed  CAS  Google Scholar 

  • Chernushevich IV, Ens W, Standing KG (1999) Orthogonal-injection TOFMS for analyzing biomolecules. Anal Chem 71:452A–461A

    Article  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa under hypoxic stress. Plant J 35:763–770

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72

    Article  PubMed  CAS  Google Scholar 

  • Duff SMG, Wittenberg JB, Hill RD (1997) Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J Biol Chem 272:16746–16752

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR (2005) Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin and their associated reductases. J Inorg Biochem 99:247–266

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95:10378–10383

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR, Martin LA, Hall D, Gardner AM (2001) Dioxygen-dependent metabolism of nitric oxide in mammalian cells. Free Radical Biol Med 31:191–204

    Article  CAS  Google Scholar 

  • Gladwin MT, Ognibene FP, Pannell LK, Nichols JS, Pease-Fye ME, Shelhamer JH, Schechter AN (2000) Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc Natl Acad Sci USA 97:9943–9948

    Article  PubMed  CAS  Google Scholar 

  • Han TH, Fukuto JM, Liao JC (2004) Reductive nitrosylation and S-nitrosation of hemoglobin in inhomogeneous nitric oxide solutions. Nitric Oxide 10:74–82

    Article  PubMed  CAS  Google Scholar 

  • Hargrove MS, Brucker EA, Stec B, Sarath G, Arredondo-Peter R, Klucas RV, Olson JS, Phillips GN Jr (2000) Crystal structure of a nonsymbiotic plant hemoglobin. Structure 8:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Hausladen A, Gow A, Stamler JS (2001) Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci USA 98:10108–10112

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Urzua E, Mills CE, White GP, Contreras-Zentella ML, Escamilla E, Vasudevan SG, Membrillo-Hernandez J, Poole RK (2003) Flavohemoglobin Hmp, but not its individual domains, confers protection from respiratory inhibition by nitric oxide in Escherichia coli. J Biol Chem 278:34975–34982

    Article  PubMed  CAS  Google Scholar 

  • Herold S, Rock G (2005) Mechanistic studies of the oxygen-mediated oxidation of nitrosylhemoglobin. Biochemistry 44:6223–6231

    Article  PubMed  CAS  Google Scholar 

  • Hill RD (1998) What are hemoglobins doing in plants? Can J Bot 76:707–712

    Article  CAS  Google Scholar 

  • Hossain MA, Asada K (1985) Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. J Biol Chem 260:12920–12926

    PubMed  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hrinczenko BW, Schechter AN, Wojtkowski TL, Pannell LK, Cashon RE, Alayash AI (2000) Nitric oxide-mediated heme oxidation and selective beta-globin nitrosation of hemoglobin from normal and sickle erythrocytes. Biochem Biophys Res Commun 275:962–967

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Pathania R, Sharma V, Mande SC, Dikshit KL (2002) Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: new insight into the functional role of VHb. Appl Environ Microbiol 68:152–160

    Article  PubMed  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi G, Nakamura T, Ohmachi H, Matsuoka A, Ochiai T, Shikama K (2002) Yeast flavohemoglobin from Candida norvegensis. Its structural, spectral, and stability properties. J Biol Chem 277:42540–42548

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Trent JT III, Hargrove MS (2003) Plants, humans and hemoglobins. Trends Plant Sci 8:387–393

    Article  PubMed  CAS  Google Scholar 

  • Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG (2000) A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun Mass Spectrom 14:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Mills CE, Sedelnikova S, Soballe B, Hughes MN, Poole RK (2001) Escherichia coli flavohaemoglobin (Hmp) with equistoichiometric FAD and haem contents has a low affinity for dioxygen in the absence or presence of nitric oxide. Biochem J 353:207–213

    Article  PubMed  CAS  Google Scholar 

  • Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS (1999) Ascaris haemoglobin is a nitric oxide-activated 'deoxygenase'. Nature 401:497–502

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Sun Z, Sarath G, Arredondo-Peter R, James EK, Becana M, Klucas RV (2002) Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase. Plant Physiol 128:300–313

    Article  PubMed  CAS  Google Scholar 

  • Nie XZ, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol 114:835–840

    PubMed  CAS  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Poole RK (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 33:176–180

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Sano S, Asada K (1994) cDNA cloning of monodehydroascorbate radical reductase from cucumber—a high degree of homology in terms of amino acid sequence between this enzyme and bacterial flavoenzymes. Plant Cell Physiol 35:425–437

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen A, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93:14440–14445

    Article  PubMed  CAS  Google Scholar 

  • Sowa AW, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci USA 95:10317–10321

    Article  PubMed  CAS  Google Scholar 

  • Takigami T, Takeuchi F, Nakagawa M, Hase T, Tsubaki M (2003) Stopped-flow analyses on the reaction of ascorbate with cytochrome b 561 purified from bovine chromaffin vesicle membranes. Biochemistry 42:8110–8118

    Article  PubMed  CAS  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    Article  PubMed  CAS  Google Scholar 

  • Xu XL, Cho M, Spencer NY, Patel N, Huang Z, Shields H, King SB, Gladwin MT, Hogg N, Kim-Shapiro DB (2003) Measurements of nitric oxide on the heme iron and beta-93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation. Proc Natl Acad Sci USA 100:11303–11308

    Article  PubMed  CAS  Google Scholar 

  • Weiland TR, Kundu S, Trent JT, Hoy JA, Hargrove MS (2004) Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics. J Am Chem Soc 126:11930–11935

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The skilful technical assistance of Doug Durnin is gratefully acknowledged. We thank Professor Werner Ens for mass spectrometry support. This work was supported by the Natural Sciences and Engineering Research Council of Canada (OGP 4689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igamberdiev, A.U., Bykova, N.V. & Hill, R.D. Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223, 1033–1040 (2006). https://doi.org/10.1007/s00425-005-0146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0146-3

Keywords

Navigation