Skip to main content
Log in

Peroxidase Activity of Leghemoglobin of Bean (Vicia faba L.) Nodules in Relation to Tert-Butyl Hydroperoxide

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Like many other hemoglobins, leghemoglobin (Lb), the hemoglobin of legume nodules, demonstrates peroxidase activity and can oxidize various substances with the participation of H2O2 or organic peroxides. The peroxidase activity of Lb isolated from bean nodules (Vicia faba L.) was studied in reaction with tert-butyl hydroperoxide, an analog of organic hydroperoxides, and o-dianisidine as a reducing substrate. The reaction catalyzed by Lb had classical Michaelis kinetics (Vmax = 1.3 M/min ⋅ mM of heme, Km = 0.8 mmol/L). The substrate concentrations that do not limit the peroxidase reaction rate were determined: 0.8 mmol/L for o-dianisidine and 1 mmol/L for tert-butyl hydroperoxide. With a pH decrease from 9 to 6, the Lb peroxidase activity increased by almost two times. This may be important for nodules in vivo, for example, during their aging, when the pH decreases and the oxidized Lb content increases. Although Lb is inferior in peroxidase activity to the true peroxidases, it can provide additional antioxidant protection under oxidative stress due to its high concentration in nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Verma, D.P.S. and Bal, A.K., Proc. Natl. Acad. Sci. U. S. A., 1976, vol. 73, no. 11, pp. 3843–3847.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Layzell, D.B. and Atkins, C.A., in Plant Metabolism, Dennis, D.T., Ed., Harlow, Essex, UK: Longman, 1997, pp. 495–505.

    Google Scholar 

  3. Topunov, A.F., Rozov, F.N., and Petrova, N.E., Russ. J. Plant Physiol., 1998, vol. 45, no. 6, pp. 814–819.

    CAS  Google Scholar 

  4. Vinogradov, S.N., Hoogewijs, D., Bailly, X., Mizuguchi, K., Dewilde, S., Moens, L., and Vanfleteren, J.R., Gene, 2007, vol. 398, no. 1, pp. 132–142.

    CAS  PubMed  Google Scholar 

  5. Kosmachevskaya, O.V. and Topunov, A.F., Appl. Biochem. Microbiol., 2009, vol. 45, no. 6, pp. 627–653.

    Google Scholar 

  6. Reeder, B.J. and Wilson, M.T., Free Radic. Biol. Med., 2001, vol. 30, pp. 1311–1318.

    CAS  PubMed  Google Scholar 

  7. Kosmachevskaya, O.V. and Topunov, A.F., Biochemistry (Moscow), 2018, vol. 83, nos. 12–13, pp. 1575–1593.

    CAS  PubMed  Google Scholar 

  8. Keilin, D. and Hartree, E.F., Nature, 1950, vol. 166, no. 4221, pp. 513–514.

    CAS  PubMed  Google Scholar 

  9. George, P. and Irvine, D.H., Biochem. J., 1952, vol. 52, pp. 511–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franzen, S., Gilvey, L.B., and Belyea, J., Biochim. Biophys. Acta, 2006, vol. 1, pp. 1718–2294.

    Google Scholar 

  11. D'Angelo, P., Lucarelli, D., la Longa, S., Benfatto, M., Hazemann, J.L., Feis, A., Smulevich, G., Ilari, A., Bonamore, A., and Boffi, A., Biophys. J., 2004, vol. 86, pp. 3882–3892.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferreira, J.C., Marcondes, M.F., Icimoto, M.Y., C-ardoso, T.H.S., Tofanello, A., Pessoto, F.S., Miranda, E.G.A., Prieto, T., Nascimento, O.R., Oliveira, V., and Nantes, I.L., PLoS One, 2015, vol. 10, no. 8. e0136554. https://doi.org/10.1371/journal.pone.0136554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gorbunov, N.V., Osipov, A.N., Day, B.W., Zayas-Rivera, B., Kagan, V.E., and Elsayed, N.M., Biochemistry, 1995, vol. 34, pp. 6689–6699.

    CAS  PubMed  Google Scholar 

  14. Grigorieva, D.V., Gorudko, I.V., Sokolov, A.V., Kosmachevskaya, O.V., Topunov, A.F., Buko, I.V., Konstantinova, E.E., Chherenkevich, S.N., and Panasenko, O.N., Bull. Exp. Biol. Med., 2013, vol. 155, no. 1, pp. 118–121.

    CAS  PubMed  Google Scholar 

  15. Reeder, B.J., Antioxid. Redox Signal., 2017, vol. 26, pp. 763–776.

    CAS  PubMed  Google Scholar 

  16. Sievers, G. and Ronnberg, M., Biochim. Biophys. Acta, 1978, vol. 533, no. 2, pp. 293–301.

    CAS  PubMed  Google Scholar 

  17. Puppo, A., Rigaud, J., Job, D., Ricard, J., and Zeba, B., Biochim. Biophys. Acta, 1980, vol. 614, no. 2, pp. 303–312.

    CAS  PubMed  Google Scholar 

  18. Davies, M.J. and Puppo, A., Biochem. J., 1992, vol. 281, no. 1, pp. 197–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Riggs, A., Methods Enzymol., 1981, vol. 76, pp. 5–29.

    CAS  PubMed  Google Scholar 

  20. Kosmachevskaya, O.V. and Topunov, A.F., Appl. Biochem. Microbiol., 2007, vol. 43, no. 3, pp. 313–319.

    CAS  Google Scholar 

  21. Lebedeva, O.V., Ugarova, N.N., and Berezin, I.V., Biokhimiya, 1977, vol. 42, no. 8.

  22. Zakharova, G.S., Uporov, I.V., and Tishkov, V.I., Usp. Biol. Khim., 2011, vol. 51, pp. 37–64.

    Google Scholar 

  23. Klucas, R.V. and Appleby, C.A., Plant Physiol., 1991, vol. 95, no. 2, pp. 551–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, S. and Varma, A., in Rhizobium Biology and Biotechnology, Hansen, A.P., , Eds., Luxembourg: Springer, 2017, pp. 309–330.

    Google Scholar 

  25. Davies, M.J., Mathieu, C., and Puppo, A., Adv. Inorg. Chem., 1999, vol. 46, pp. 495–542.

    Google Scholar 

  26. Svistunenko, D.A., Biochim. Biophys. Acta, 2005, vol. 1707, pp. 127–155.

    CAS  PubMed  Google Scholar 

  27. Mannino, M.H., Patel, R.S., Eccardt, A.M., Perez Magnelli, R.A., Robinson, C.L.C., Janowiak, B.E., Warren, D.E., and Fisher, J.S., Comp. Biochem. Physiol., B: Biochem. Mol. Biol., 2019, vol. 234, pp. 9–17.

    CAS  Google Scholar 

  28. Appleby, C.A., Biochim. Biophys. Acta, 1969, vol. 188, pp. 222– 229.

    CAS  PubMed  Google Scholar 

  29. Fantone, J., Jester, S., and Loomis, T., J. Biol. Chem., 1989, vol. 264, pp. 9408–9411.

    CAS  PubMed  Google Scholar 

  30. Rodriguez-Malaver, A.J., Leake, D.S., and Rice-Evans, C.A., FEBS Lett., 1997, vol. 406, pp. 37–41.

    CAS  PubMed  Google Scholar 

  31. Vlasova, I.I., Molecules, 2018, vol. 23, p. 2561.

    PubMed Central  Google Scholar 

  32. Huang, L. and Wojciechowski, G., Ortiz de montellano p.r, J. Biol. Chem., 2006, vol. 281, pp. 18983–18938.

    CAS  PubMed  Google Scholar 

  33. Auer, M., Nicolussi, A., Schütz, G., Furtmüller, P.G., and Obinger, C.J., J. Biol. Chem., 2014, vol. 289, no. 45, pp. 31480–31491.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, P.K., Iqbal, N., Sirohi, H.V., Bairagya, H.R., Kaur, P., Sharma, S., and Singh, T.P., Prog. Biophys. Mol. Biol., 2018, vol. 133, pp. 49–55.

    CAS  PubMed  Google Scholar 

  35. de Montellano, P.R.O., J. Biol. Chem., 2015, vol. 290, no. 36, pp. 21833–21844.

    Google Scholar 

  36. Gazaryan, I.G., Khushpul’yan, D.M., and Tishkov, V.I., Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.

    CAS  Google Scholar 

  37. Moreau, S., Davies, M.J., Mathieu, C., Herouart, D., and Puppo, A., J. Biol. Chem., 1996, vol. 271, no. 51, pp. 32557–32562.

    CAS  PubMed  Google Scholar 

  38. Moreau, S., Davies, M.J., and Puppo, A., Biochim. Biophys. Acta, 1995, vol. 1251, no. 1, pp. 17–22.

    PubMed  Google Scholar 

  39. Arredondo-Petter, R. and Esamilla, E., Plant Mol. Biol. Rep., 1991, vol. 9, no. 3, pp. 195–207.

    Google Scholar 

  40. Svistunenko, D.A., Dunne, J., Fryer, M., Nicholls, P., Reeder, B.J., Wilson, M.T., Bigotti, M.G., Cutruzzola, F., and Cooper, C.E., Biophys. J., 2002, vol. 83, pp. 2845–2855.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reeder, B.J., Grey, M., Silaghi-Dumitrescu, R.L., Svistunenko, D.A., Bülow, L., Cooper, C.E., and Wilson, M.T., J. Biol. Chem., 2008, vol. 283, pp. 30780–30787.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Reeder, B.J., Svistunenko, D.A., Cooper, C.E., and Wilson, M.T., Antioxid. Redox Signal., 2004, vol. 6, pp. 954–966.

    CAS  PubMed  Google Scholar 

  43. Puppo, A., Monny, C., and Davies, M.J., Biochem. J., 1993, vol. 289, pp. 435–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saari, L.L. and Klucas, R.V., Biochim. Biophys. Acta, 1987, vol. 912, no. 2, pp. 198–202.

    CAS  PubMed  Google Scholar 

  45. Becana, M., Salin, M.L., Ji, L., and Klucas, R.V., Planta, 1991, vol. 183, no. 4, pp. 575–583.

    CAS  PubMed  Google Scholar 

  46. Giulivi, C. and Davies, K.J.A., J. Biol. Chem., 1990, vol. 265, pp. 19453–19460.

    CAS  PubMed  Google Scholar 

  47. Nagababu, E. and Rifkind, J.M., Biochemistry, 2000, vol. 39, pp. 12503–12511.

    CAS  PubMed  Google Scholar 

  48. Puppo, A. and Halliwell, B., Planta, 1988, vol. 173, pp. 405–410.

    CAS  PubMed  Google Scholar 

  49. Becana, M. and Klucas, R.V., Plant Physiol., 1992, vol. 98, pp. 1217–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanner, J. and Harel, S., Arch. Biochem. Biophys., 1985, vol. 237, pp. 314–321.

    CAS  PubMed  Google Scholar 

  51. Cooper, C.E., Silaghi-Dumitrescu, R., Rukengwa, M., Alayash, A.I., and Buehler, P.W., Biochim. Biophys. Acta, 2008, vol. 1784, pp. 1415–1420.

    CAS  PubMed  Google Scholar 

  52. Tejero, J., Kapralov, A.A., Baumgartner, M.P., Sparacino-Watkins, C.E., Anthonymutu, T.S., Vlasova, I.I., Camacho, C.J., Gladwin, M.T., Bayir, H., and Kagan, V.E., Biochim. Biophys. Acta, 2016, vol. 1861, no. 5, pp. 381–401.

    Google Scholar 

  53. Mannino, M.H., Patel, R.S., Eccardt, A.M., Janowiak, B.E., Wood, D.C., He, F., and Fisher, J.S., Antioxidants, 2020, vol. 9, no. 6. e549. https://doi.org/10.3390/antiox9060549

    Article  CAS  PubMed  Google Scholar 

  54. Widmer, C.C., Pereira, C.P., Gehrig, P., Vallelian, F., Schoedon, G., Buehler, P.W., and Schaer, D.J., Antioxid. Redox Signal., 2010, vol. 12, pp. 185–198.

    CAS  PubMed  Google Scholar 

  55. Schaer, D.J., Buehler, P.W., Alayash, A.I., Belcher, J.D., and Vercellotti, G.M., Blood, 2013, vol. 121, pp. 1276–1284.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, D., Chen, X.Q., Li, W.J., Yang, Y.H., Wang, J.Z., and Yu, A.C., Neurochem. Res., 2007, vol. 32, pp. 1375–1380.

    CAS  PubMed  Google Scholar 

  57. Lee, K.-K., Shearman, L.L., Erickson, B.K., and Klucas, R.V., Plant. Physiol., 1995, vol. 109, no. 1, pp. 261–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pladys, D., Barthe, P., and Rigaud, J., Plant Sci., 1988, vol. 56, pp. 99–106.

    CAS  Google Scholar 

  59. Moreau, S., Davies, M.J., and Puppo, A., Biochim. Biophys. Acta, 1995, vol. 1251, no. 1, pp. 17–22.

    PubMed  Google Scholar 

  60. Evans, P.J., Gallesi, D., Mathieu, C., Hernandez, M.J., de Felipe, M., Halliwell, B., and Puppo, A., Planta, 1999, vol. 208, pp. 73–79.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out on the equipment of the Shared-Access Equipment Center of Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Topunov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmachevskaya, O.V., Nasybullina, E.I. & Topunov, A.F. Peroxidase Activity of Leghemoglobin of Bean (Vicia faba L.) Nodules in Relation to Tert-Butyl Hydroperoxide. Appl Biochem Microbiol 58, 37–44 (2022). https://doi.org/10.1134/S0003683822010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822010045

Keywords:

Navigation