Skip to main content

Legume Root Exudates: Their Role in Symbiotic Interactions

  • Chapter
  • First Online:
Plant Microbes Symbiosis: Applied Facets

Abstract

Legumes are in constant dynamic interactions with rhizobia and arbuscular mycorrhizal (AM) fungi which mutually benefit the partners. Legumes provide the carbon energy to the microbes, and they in turn provide the nutrients such as nitrogen and phosphorus. The growth of these symbionts largely depends on the secretions of the legume roots which include both high and low molecular weight compounds. These molecules also act as cues in plant-microbe signaling and recognition. A cascade of reactions take place between the legume and the microbe before specific refined symbiotic partnership manifests mutually benefiting both the partners. Here, we provide an overview of the functions of legume root exudates with emphasis on the interactions between legume and rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    PubMed  CAS  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals in fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    PubMed  CAS  Google Scholar 

  • Antolin-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50:451–473

    PubMed  CAS  Google Scholar 

  • Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488

    Google Scholar 

  • Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X (2004) Characterization of NopP, a Type III secreted effector of Rhizobium sp. Strain NGR234. J Bacteriol 186:4774–4780

    PubMed  CAS  PubMed Central  Google Scholar 

  • Badri DV, Weirl TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    PubMed  CAS  Google Scholar 

  • Bartsev A, Kobayashi H, Broughton WJ (2004) Rhizobial signals convert pathogens to symbionts at the legume interface. In: Gillings M, Holmes A (eds) Plant microbiology. Garland Science⁄BIOS Scientific Publishers, Abingdon, pp 19–31

    Google Scholar 

  • Bassam BJ, Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1988) Identification of a nodD dependent locus in the Rhizobium strain NGR234 activated by phenolic factors secreted by soybeans and other legumes. Mol Plant-Microbe Interact 1:161–168

    PubMed  CAS  Google Scholar 

  • Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 68:1260–1264

    Google Scholar 

  • Benfey PN, Scheres B (2000) Root development. Curr Biol 16:813–815

    Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:226

    Google Scholar 

  • Besserer A, Bécard G, Jauneau A, Roux C, Séjalon- Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    PubMed  CAS  PubMed Central  Google Scholar 

  • Besserer A, Becard G, Roux C, Se’jalon-Delmas N (2009) Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signal Behav 4:75–77

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    PubMed  CAS  Google Scholar 

  • Chabot S, Bel-Rhlid R, Chênevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoids compounds under CO2-enriched conditions. New Phytol 122:461–467

    CAS  Google Scholar 

  • Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF (2005) Modulating DNA bending affects NodD mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 33:2540–2548

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 17:4–199

    Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    PubMed  CAS  Google Scholar 

  • D’Arcy-Lameta A, Jay M (1987) Study of soybean and lentil root exudates. III. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant Soil 101:267–72

    Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12(6):79–105

    Google Scholar 

  • Dakora FD (2000) Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust J Plant Physiol 27:885–892

    CAS  Google Scholar 

  • Dastmalchi M, Dhaubhadel S (2014) Soybean seed isoflavonoids: biosynthesis and regulation. Phytochemicals – biosynthesis, function and application. Recent Adv Phytochem 44:1–21

    Google Scholar 

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638

    CAS  Google Scholar 

  • de Lyra MCCP, Lo’pez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny MR, Cubo MT, Bellogı’n RA, Ruiz-Sainz JE, Ollero FJ (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9:125–133

    Google Scholar 

  • de Maagd RA, Wijfjes AH, Spaink HP, Ruiz-Sainz JE, Wijffelman CA, Okker RJ, Lugtenberg BJ (1989) NodO, a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1JI, encodes a secreted protein. J Bacteriol 171:6764–6770

    PubMed  PubMed Central  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    PubMed  CAS  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    PubMed  Google Scholar 

  • Dixon RA, Harrison MJ, Paiva NL (1995) The isoflavonoid phytoalexin pathway: from enzymes to genes to transcription factors. Physiol Plant 93:385–392

    CAS  Google Scholar 

  • Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179

    PubMed  CAS  PubMed Central  Google Scholar 

  • Enkerli J, Bhatt G, Covert SF (1998) Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. Mol Plant Microbe Interact 11:317–326

    CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium–plant signal exchange. Nature 387:655–660

    Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    PubMed  CAS  Google Scholar 

  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87

    PubMed  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587–593

    Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Google Scholar 

  • Gomez-Roldan V, Roux C, Girard D, Bécard G, Puech V (2007) Strigolactones: promising plant signals. Plant Signal Behav 2:163–164

    PubMed  PubMed Central  Google Scholar 

  • Graham TL (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95:594–603

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gu M, Chen A, Dai X, Liu W, Xu G (2011) How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant Signal Behav 6:1300–1304

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of Arbuscular Mycorrhiza Symbiosis. Annu Rev Cell Dev Biol 29:593–617

    PubMed  CAS  Google Scholar 

  • Harrison MJ (2009) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti. Plant Physiol 92:116–122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    PubMed  CAS  Google Scholar 

  • He J, Ruan Y, Straney D (1996) Analysis of determinants of binding and transcriptional activation of the pisatin-responsive DNA binding factor of Nectria haematococca. Mol Plant Microbe Interact 9:171–179

    PubMed  CAS  Google Scholar 

  • Heinz EB, Phillips DA, Streit WR (1999) BioS, a biotin- induced, stationary phase, and possible LysR-type regulator in Sinorhizobium meliloti. Mol Plant Microbe Interact 12:803–812

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Uber neure erfahrungen und probleme auf dem Gebiet der Boden-bakteriologie und unter besondere Berucksichtigung der grundungung und Bracke. Arb DLG 98:59–78

    Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991) Anthocyanidins and flavonols, major nod gene Inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97:751–758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2000) Plant rhizodeposition an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    Google Scholar 

  • Kamst E, Spaink HP, Kafetzopoulos D (1998) Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. In: Biswas BB, Das HK (eds) Plant-microbe interactions-subcellular biochemistry. Plenum Press, New York, pp 29–71

    Google Scholar 

  • Kang J, Parka J, Choia H, Burlab B, Kretzschmarb T, Leea Y, Martinoiaa E (2011) Plant ABC transporters. The Arabidopsis book 9: e0153. http://dx.doi.org/10.1199/tab.0153

  • Kannenberg EL, Perzl M, Ha¨rtner T (1995) The occurrence of hopanoid lipids in Bradyrhizobium bacteria. FEMS Microbiol Lett 127:255–262

    CAS  Google Scholar 

  • Koltai H, Kapulnik Y (2011) Strigolactones as mediators of plant growth responses to environmental conditions. Plant Signal Behav 6:37–41

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci U S A 84:7428–7432

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krause A, Doerfel A, Go¨ttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235

    PubMed  CAS  Google Scholar 

  • Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M, Pueppke SG (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16:617–625

    PubMed  CAS  Google Scholar 

  • Larose G, Chenevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    CAS  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 99:14446–14451

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58

    PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants. Nature 364:247–249

    CAS  Google Scholar 

  • Martinoia E, Klein M, Bovet L, Forestier C, Kolukisaoglu Ü, Műller-Rover B, Schulz B (2002) Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta 214:345–355

    PubMed  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Ano’lles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matiru VN, Dakora FD (2005) Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. New Phytol 165:847–855

    PubMed  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    PubMed  CAS  PubMed Central  Google Scholar 

  • Messens E, Geelen D, van Montagu M, Holsters M (1991) 7,4-Dihydroxyflavanone is the major Azorhizobium nod gene-inducing factor present in Sesbania rostrata seedling exudate. Mol Plant-Microbe Interact 4:262–267

    CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions and their potential role in biological control. Plant Soil 185:241–251

    CAS  Google Scholar 

  • Morandi D, Branzanti B, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    CAS  Google Scholar 

  • Moscatiello R, Squartini A, Mariani P, Navazio L (2010) Flavonoid-induced calcium signaling in Rhizobium leguminosarum bv. Viciae. New Phytol 188:814–823

    PubMed  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115:351358

    Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  • Okazaki S, Zehner S, Hempel J, Lang K, Gottfert M (2009) Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295:88–95

    PubMed  CAS  Google Scholar 

  • Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S (2010) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol Plant Microbe Interact 23:223–234

    PubMed  CAS  Google Scholar 

  • Parke D (1997) Acquisition, reorganization, and merger of genes: novel management of the beta-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol Lett 146:3–12

    CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    PubMed  CAS  Google Scholar 

  • Phillips DA, Joseph CM, Yang GP, Martı’nez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci U S A 96:12275–12280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Poulin MJ, Bel-Rhlid R, Piché Y, Chênevert R (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 19:2317–2327

    PubMed  CAS  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12(4):293–318

    PubMed  CAS  Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signaling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    PubMed  CAS  Google Scholar 

  • Rao JR, Cooper JE (1994) Rhizobia catabolise nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    PubMed  CAS  PubMed Central  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassels R, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    CAS  Google Scholar 

  • Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11:316–321

    Google Scholar 

  • Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    CAS  Google Scholar 

  • Srivastava P, Sharma PK, Dogra RC (1999) Inducers of nod genes of Rhizobium ciceri. Microbiol Res 154:49–55

    PubMed  CAS  Google Scholar 

  • Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton, p 298

    Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules 12:1290–1306

    PubMed  CAS  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338

    PubMed  CAS  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    PubMed  CAS  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    PubMed  CAS  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. Strain NGR234. Mol Plant Microbe Interact 17:1153–1161

    PubMed  CAS  Google Scholar 

  • Umehara M (2011) Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnol 28:429–437

    CAS  Google Scholar 

  • Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer Academic/Plenum Press, New York, pp 23–39

    Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y (1998) Flavonoids and arbuscular-mycorrhizal fungi. In: Buslig BS, Manthey JA (eds) Flavonoids in the living system. Plenum Press, New York, pp 9–33

    Google Scholar 

  • Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389

    PubMed  CAS  Google Scholar 

  • Vlassak KM, Luyten E, Verreth C, van Rhijn P, Bisseling T, Vanderleyden J (1998) The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol Plant Microbe Interact 11:383–392

    CAS  Google Scholar 

  • Wang X (2010) Structural studies and mechanisms of isoflavonoid biosynthesis. In: Thompson MJ (ed) Isoflavones biosynthesis, occurrence and health effects. Nova Publishers, New York, pp 239–254

    Google Scholar 

  • Wang B, Qui YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    PubMed  CAS  Google Scholar 

  • Wasmannm CC, Van Etten HD (1996) Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Mol Plant Microbe Interact 9:793–803

    Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • Winkel SB (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zaat SAJ, Schripsema J, Wijffelman CA, Brussel AAN, Lugtenberg BJJ (1989) Analysis of the major inducers of the Rhizobium nodA promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol Biol 13:175–188

    PubMed  CAS  Google Scholar 

  • Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zuanazzi J, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe Interact 11:784–794

    CAS  Google Scholar 

Download references

Acknowledgments

The first author is grateful to the Department of Biotechnology, Govt. of India, for the DBT-RA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Biate, D.L. et al. (2015). Legume Root Exudates: Their Role in Symbiotic Interactions. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_13

Download citation

Publish with us

Policies and ethics