Skip to main content
Log in

The non-flavonoid inducible nodA3 and the flavonoid regulated nodA1 genes of Rhizobium tropici CIAT 899 guarantee nod factor production and nodulation of different host legumes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The symbiosis between rhizobia and their host legumes is initiated by a complex molecular dialogue in which the activation of bacterial NodD proteins by appropriate plant flavonoids triggers the expression of the bacterial nodulation (nod) genes. These genes are involved in the synthesis and export of the Nodulation factors (NF), which are signal molecules that, when recognized by plant receptors, launch the symbiotic process. The core of NF is synthesized by proteins encoded by the nodABC genes, whereas the rest of the nod genes protein products are involved in the decoration of NF with different chemical substituents and their export to the environment. Rhizobium tropici CIAT 899, the microsymbiont of common bean (Phaseolus vulgaris), is characterized for tolerating multiple physical stresses and for synthesizing a large variety of NF not only in the presence of inducing flavonoids but also when high concentrations of salt are present. In addition, another interesting feature of the R. tropici CIAT 899 genome is the presence of three different nodA genes on the symbiotic plasmid, although their exact roles remain to be elucidated. In this work, we characterize the role of the three NodA proteins of R. tropici CIAT 899 in symbiosis.

Methods

We have analyzed by quantitative PCR the expression of the nodA1, nodA2 and nodA3 genes of CIAT 899, showing that only nodA1 and nodA2 are inducible by flavonoids. We have also constructed single, double and triple non-polar mutants in these genes in order to study their importance in NF production and in nodulation of four different host legumes of CIAT 899: P. vulgaris, Leucaena leucocephala, Lotus japonicus, and L. burttii.

Results

The nodA1 and nodA2 genes of CIAT 899 (both inducible by flavonoids) are more related between them than with nodA3 (non-flavonoid inducible). Interestingly, the presence of NodA1 or NodA3 is crucial for nodulation with L. leucocephala and L. japonicus, since both NodA1 or NodA3 guarantee Nod factor production upon apigenin induction. Interestingly, osmotic-stressing conditions increase the quantity and diversity of the Nod factors synthesized by NodA2, being these molecules able to induce the formation of nodule primordia on P. vulgaris.

Conclusions

We concluded that R. tropici CIAT 899 requires at least the flavonoid-induced nodA1 or the flavonoid-independent nodA3 genes for ensuring symbiotic success in the four assayed host-legumes. The inducible nodA2 gene is sufficient to induce nodulation on P. vulgaris and L. burttii but not in L. leucocephala and L. japonicus. To our knowledge, in this work we report for the first time that a non-flavonoid inducible copy of nodA is enough to induce nodulation on legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Jurado S, Navarro-Gómez P, Murdoch PS, Crespo-Rivas JC, Jie S, Cuesta-Berrio L, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM (2016) Exopolysaccharide production by Sinorhizobium fredii HH103 is repressed by genistein in a NodD1-dependent manner. PLoS One 11:e0160499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Bustos P, Santamaría RI, Pérez-Carrascal OM, Acosta JL, Lozano L, Juárez S, Martínez-Flores I, Martínez-Romero E, Cevallos MA, Romero D, Dávila G, Vinuesa P, Miranda F, Ormeño E, González V (2017) Complete genome sequences of three Rhizobium gallicum symbionts associated with common bean (Phaseolus vulgaris). Genome Announc 5:e00030–e00017

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • del Cerro P, Rolla-Santos AA, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-Carvajal MA, Nakatani AS, Gil-Serrano A, Megías M, Ollero FJ, Hungria M (2015a) Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genomics 16:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Cerro P, Rolla-Santos AA, Gomes DF, Marks BB, Espuny MR, Rodríguez-Carvajal MA, Soria-Díaz ME, Nakatani AS, Hungria M, Ollero FJ, Megías M (2015b) Opening the “black box” of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899. BMC Genomics 16:864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Cerro P, Rolla-Santos AA, Valderrama-Fernández R, Gil-Serrano A, Bellogín RA, Gomes DF, Pérez-Montaño F, Megías M, Hungría M, Ollero FJ (2016) NrcR, a new transcriptional regulator of Rhizobium tropici CIAT 899 involved in the legume root-nodule symbiosis. PLoS One 11(4):e0154029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Cerro P, Pérez-Montaño F, Gil-Serrano A, López-Baena FJ, Megías M, Hungria M, Ollero FJ (2017) The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of nod factors under salt stress in a flavonoid-independent manner. Sci Rep 7:46712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dénarié J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fårhaeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    Google Scholar 

  • Geurts R, Bisseling T (2002) Rhizobium nod factor perception and signalling. Plant Cell 14:S239–S249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffitts JS, Long SR (2008) A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Mol Microbiol 67:1292–1306

    Article  CAS  PubMed  Google Scholar 

  • Guasch-Vidal B, Estévez J, Dardanelli MS, Soria-Díaz ME, de Córdoba FF, Balog CI (2013) High NaCl concentrations induce the nod genes of Rhizobium tropici CIAT 899 in the absence of flavonoid inducers. Mol Plant-Microbe Interact 26:451–460

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Johnston AWB, Phillips DA (1992) Effects of flavonoids releasednaturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant-Microbe Interact 5:199–203

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Gutiérrez-Mañero FJ, Megías M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 21:1515–1528

    Article  Google Scholar 

  • Janczarek M, Rachwał K, Marzec A, Grzadziel J, Palusinska-Szysz M (2015) Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions. Appl Soil Ecol 85:94–113

    Article  Google Scholar 

  • John M, Röhrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci U S A 90:625–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant-Microbe Interact 15:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher, G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 337:1870–1874, 33

  • Lamrabet Y, Bellogín RA, Cubo T, Espuny R, Gil A, Krishnan HB, Megias M, Ollero FJ, Pueppke SG, Ruiz-Sainz JE, Spaink HP, Tejero-Mateo P, Thomas-Oates J, Vinardell JM (1999) Mutation in GDP fucose synthesis genes of Sinorhizobium fredii alters nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant-Microbe Interact 12:207–217

    Article  CAS  PubMed  Google Scholar 

  • Long SR (2016) SnapShot: Signaling in Symbiosis. Cell 167:582–582, 582.e1

  • López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, Espuny MR, Ollero FJ (2008) Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154:1825–1836

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  CAS  PubMed  Google Scholar 

  • Nogales J, Campos R, Ben Abdelkhalek H, Olivares J, Lluch C, Sanjuán J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microbe Interact 15:225–232

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormeño-Orrillo E, Gomes DF, del Cerro P, Riberiro-Vasconcelos AT, Canchaya C, Almeida LG, Mercante FM, Ollero FJ, Megías M, Hungria M (2016) Genome of Rhizobium leucaneae strains CFN 299T and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics 17:534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, Jiménez-Guerrero I, del Cerro P, Baena-Ropero I, López-Baena FJ, Ollero FJ, Bellogín R, Lloret J, Espuny R (2014) The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1. PLoS One 9:105901

  • Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM (2016a) A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci Rep 6:31592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, del Cerro P, Jiménez-Guerrero I, López-Baena FJ, Cubo MT, Hungria M, Megías M, Ollero FJ (2016b) RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genomics 17:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45, 45e, 445

  • Poupot R, Martínez-Romero E, Promé JC (1993) Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus. Biochemistry 32:10430–10435

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch, EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor NY USA

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink H, Kondorosi A, Hooykaas P (eds) The Rhizobiaceae. Molecular biology of model plant-associated Bacteria. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 361–386

    Google Scholar 

  • Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJ, Kennedy EP (1992) Detection and separation of Rhizobium and Bradyrhizobium nod metabolites using thin-layer chromatography. Mol Plant-Microbe Interact 5:72–80

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 17:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Truchet G, Camut S, de Billy F, Odorico R, Vasse J (1989) The Rhizobium-legume symbiosis. Two methods to discriminate between nodules and other root derived structures. Protoplasma 149:82–89

    Article  Google Scholar 

  • Vinardell JM, López-Baena FJ, Hidalgo A, Ollero FJ, Bellogín R, Espuny MR, Temprano F, Romero F, Krishnan HB, Pueppke SG, Ruiz-Sainz JE (2004) The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Arch Microbiol 181:144–154

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) The modified Fåhraeus slide technique, in A manual for the practical study of root nodule bacteria, ed. J.M. Vincent (Oxford, UK. Blackwell Scientific Publications), 144–145

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad of the Spanish government (projects AGL2016-77163-R and BIO2016-78409-R). P. del Cerro is recipient of a FPU fellowship (FPU14/00160) of the Ministerio de Economía y Competitividad. Authors sincerely thank Servicio General de Biología of the CITIUS from the University of Seville for allowing us to use their laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Ollero.

Additional information

Responsible Editor: Ulrike Mathesius.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary file 1

Bacterial strains and plasmids used in this study. (DOCX 16 kb)

Supplementary file 2

Primers used in this study. (DOCX 17 kb)

Supplementary file 3

Confirmation of deletion events in the nodA mutants by PCR and hybridization. A. PCR amplification by using nodA gene external primers (primers -A and -D listed in Supplementary file 2) and gDNA of the different mutant backgrounds as templates. Amplicons were confirmed by sequencing. B. Southern blot hybridization with probes of nodA genes (made with primers -A and -D listed in Supplementary file 2). gDNA of each nodA mutant strain was digested with specific restriction enzymes. (PNG 2994 kb)

High Resolution (TIF 1093 kb)

Supplementary file 4

Venn diagram showing the overlapping of NF synthetized in the presence of apigenin by the different CIAT 899 double nodA mutants. (XLSX 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Cerro, P., Ayala-García, P., Jiménez-Guerrero, I. et al. The non-flavonoid inducible nodA3 and the flavonoid regulated nodA1 genes of Rhizobium tropici CIAT 899 guarantee nod factor production and nodulation of different host legumes. Plant Soil 440, 185–200 (2019). https://doi.org/10.1007/s11104-019-04073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04073-2

Keywords

Navigation