Skip to main content
Log in

The MsPRP2 promoter enables strong heterologous gene expression in a root-specific manner and is enhanced by overexpression of Alfin 1

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Promoter specificity and efficiency of utilization are essential for endogenous and transgene expression. Selective root expression remains to be defined in terms of both promoter elements and transcription factors that provide high levels of ubiquitous expression. We characterized expression from the MsPRP2 promoter with the green fluorescent protein (GFP) reporter transgene in alfalfa (Medicago sativa) and found that a promoter fragment (+1 to −652 bp) retained the root and callus specificity of the endogenous MsPRP2 gene and hence this promoter fragment contains elements necessary for root-specific expression. The strong ubiquitous expression obtained from this promoter was comparable to that of the CaMV 35S promoter in roots and was enhanced by transgenic overexpression of Alfin 1, a root- and callus-specific transcription factor in alfalfa. No transgenic expression was obtained in leaves with this promoter in the presence or absence of Alfin 1. The increased expression of GFP in alfalfa containing the Alfin 1 transgene confirms the function of Alfin 1 binding sites in the MsPRP2 promoter fragment and also indicates that Alfin 1 concentrations are limiting for maximal expression in calli and roots. These findings characterize the MsPRP2 promoter as a novel root- and callus-specific promoter of plant origin that can be used as an effective tool for strong root-directed gene expression. In addition, we have demonstrated that the signal sequence of MsPRP2 can be used for efficient secretion of transgene products from callus and roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A, B
Fig. 7

Similar content being viewed by others

Abbreviations

CaMV :

Cauliflower mosaic virus

GFP :

Green fluorescent protein

MsPRP2 :

Medicago sativa proline rich protein 2

References

  • An G, Ebert P, Mitra A, Ita S (1988) Binary vectors. In: Plant molecular biology manual, vol 1, section A. Kluwer, Dordrecht, pp 1–19

  • Bastola DR, Pethe VV, Winicov I (1998) Alfin 1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38:1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Weigel D (2001) Transcriptional networks controlling plant development. Plant Physiol 125:109–111

    CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  PubMed  Google Scholar 

  • Bogusz D, Llewellyn DJ, Craig S, Dennis ES, Appleby CA, Peacock WJ (1990) Nonlegume hemoglobin genes retain organ-specific expression in heterologous transgenic plants. Plant Cell 2:633–641

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H.-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    CAS  PubMed  Google Scholar 

  • Chen Z-L, Schuler MA, Beachy RN (1986) Functional analysis of a plant embryo-specific gene. Proc Natl Acad Sci USA 83:8560–8564

    CAS  PubMed  Google Scholar 

  • Cho H-T, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Covitz PA, Smith LS, Sharon RL (1998) Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol 117:1325–1332

    CAS  PubMed  Google Scholar 

  • Deutch CE, Winicov I (1995) Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol 27:411–418

    CAS  PubMed  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk L, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  CAS  PubMed  Google Scholar 

  • Harper BK, Stewart CN Jr (2000) Patterns of green fluorescent protein expression in transgenic plants. Plant Mol Biol Rep 18:141a–141i

    Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    CAS  PubMed  Google Scholar 

  • Hauser M-T, Morikami A, Benfey PN (1995) Conditional root expansion mutants of Arabidopsis. Development 121:1237–1252

    CAS  PubMed  Google Scholar 

  • Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646

    CAS  PubMed  Google Scholar 

  • Horwath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97:1914–1919

    CAS  PubMed  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    CAS  Google Scholar 

  • Keller B, Lamb CJ (1989) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev 3:1639–1646

    CAS  PubMed  Google Scholar 

  • Laporte MM, Galagan JA, Prasch AL, Vanderveer PJ, Hanson DT, Shewmaker CK, Sharkey TD (2001) Promoter strength and tissue specificity effects on growth of tomato plants transformed with maize sucrose-phosphate synthase. Planta 212:817–822

    Article  CAS  PubMed  Google Scholar 

  • Lerner DR, Raikhel NV (1989) Cloning and characterization of root-specific barley lectin. Plant Physiol 91:124–129

    CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM (2003) Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol 52:103–120

    CAS  PubMed  Google Scholar 

  • Ni M, Cui D, Gelvin SB (1996) Sequence-specific interactions of wound-inducible nuclear factors with mannopine synthase 2′ promoter wound-responsive elements. Plant Mol Biol 30:77–96

    CAS  PubMed  Google Scholar 

  • Paquette AJ, Benfey PN (2001) Axis formation and polarity in plants. Curr Opin Genet Dev 11:405–409

    Article  CAS  PubMed  Google Scholar 

  • Reichman JL, Heard J, Martin G, Reuber L, Jiang C-A, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G-L (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    CAS  PubMed  Google Scholar 

  • Remans T, Schenk PM, Manners JM, Grof CPL, Elliott AR (1999) A protocol for the fluorometric quantification of mGFP-ER and sGFP(S65T) in transgenic plants. Plant Mol Biol Rep 17:385–395

    Article  CAS  Google Scholar 

  • Rodriguez Milla MA, Butler E, Rodriguez Huete A, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  PubMed  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriquez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  • Schiefelbein JW, Masucci JD, Wang H (1997) Building a root: the control of patterning and morphogenesis during root development. Plant Cell 9:1089–1098

    CAS  PubMed  Google Scholar 

  • Schmid J, Doerner PW, Clouse SD, Dixon RA, Lamb CJ (1990) Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. Plant Cell 2:619–631

    CAS  PubMed  Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    CAS  PubMed  Google Scholar 

  • Suzuki H, Fowler TJ, Tierney ML (1992) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119

    Google Scholar 

  • Wang Y-H, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Winicov I (1993) cDNA encoding putative zinc finger motifs from salt-tolerant alfalfa (Medicago sativa L.) cells. Plant Physiol 102:681–682

    Article  CAS  PubMed  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422

    CAS  PubMed  Google Scholar 

  • Winicov I, Bastola DR (1999) Transgenic overexpression of the transcription factor Alfin 1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120:473–480

    Article  CAS  PubMed  Google Scholar 

  • Winicov I, Deutch CE (1994) Characterization of a cDNA clone from salt-tolerant alfalfa cells that identifies salt inducible root specific transcripts. J Plant Physiol 144:222–228

    CAS  Google Scholar 

  • Yamamoto YT, Taylor CG, Acedo GN, Cheng C-L, Conkling MA (1991) Characterization of cis-acting sequences regulation root-specific gene expression in tobacco. Plant Cell 3:371–382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jim Haseloff for his gift of the msgfp5 plasmid. Our thanks also to Drs. R. Trelease and R. Flynn for discussions. This work was supported in part by a grant from the Wallace Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilga Winicov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winicov, I., Valliyodan, B., Xue, L. et al. The MsPRP2 promoter enables strong heterologous gene expression in a root-specific manner and is enhanced by overexpression of Alfin 1 . Planta 219, 925–935 (2004). https://doi.org/10.1007/s00425-004-1296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1296-4

Keywords

Navigation