Skip to main content
Log in

Monoterpenes from the essential oil from Brazilian propolis affect seedling cellular elongation

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Propolis is a complex mixture of beeswax, resinous and volatile substances produced by honeybees with material collected from plant exudates. The essential oil obtained from a propolis samples from southern Brazil was extracted by hydro-distillation. The yield of oil is high (8.5%), and its major constituents are the monoterpenes α-pinene (86%), β-pinene (12%) and camphene (1%). At 1% concentration, the oil inhibited the germination of lettuce seeds. At 0.25%, the growth speed index and the growth of the hypocotyl–radicle axis reduced substantially. The oil at 0.5% inhibited the elongation of procambial cells and shifted the elongation of the ground meristem cells axially to radially. Hence, the elongation zone assumed a stratified arrangement. In radicles from seeds treated with oil at 1%, a radially directed cell elongation took place in the root cap, protoderm and procambium, preventing the root to protrude. Intercellular spaces appeared between layers of cells of the ground meristem. The anatomical changes observed might be an effect of monoterpenes, either promoting the production of ethylene or affecting the sensitivity of meristem cells to this regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1–21.

Similar content being viewed by others

References

  • Abrahim D, Wl Braguini, Am Kelmer-Bracht, Ishii-Iwamoto EL (2000) Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J Chem Ecol 26:611–624

    Article  CAS  Google Scholar 

  • Abrahim D, Takahashi L, Am Kelmer-Bracht, Ishii-Iwamoto EL (2003) Effects of phenolic acids and monoterpenes on the mitochondrial respiration of soybean hypocotyls axis. Allelop J 11:21–30

    Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Adelmann J, Passos M, Breyer DH, Santos MHR, Lenz C, Leite NF, Lanças FMA, Fontana JD (2007) Exotic flora dependence of an unusual Brazilian propolis; the pinocembrin biomarker by capillary techniques. J Pharm Biomed Anal 43:174–178

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque IL, Alves LA, Lemos TLG, Dorneles CA, Morais MO (2008) Constituents of the essential oil of Brazilian green propolis from Brazil. J Essent Oil Res 20:414–415

    Google Scholar 

  • Angelini LG, Carpanese G, Cioni PL, Morellli I, Macchia M, Flamini G (2003) Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J Agric Food Chem 51:6158–6164

    Article  CAS  PubMed  Google Scholar 

  • Bankova V (2005) Recent trends and important developments in propolis research. Evid Based Complement Altern Med 2:29–32

    Article  Google Scholar 

  • Bankova V, Popova M, Trusheva B (2014) Propolis volatile compounds: chemical diversity and biological activity: a review. Chem Cent J 8:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista RJD, Grossi JAS, Ribeiro Junior JI, Barbosa JG, Finger FL (2009) Rose flower longevity in response do ethylene and 1-methylcyclopropene (1-MCP). In: IX international symposium on postharvest quality of ornamental plants. International Society for Horticultural Science, Leuven. doi:10.17660/ActaHortic.2009.847.50

  • Brophy JJ, Gosdsack RJ, Wu MZ, Fookes CJR, Forster PI (2000) The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochem Syst Ecol 28:563–578

    Article  CAS  PubMed  Google Scholar 

  • Chowhan N, Singh HP, Batish DR, Kaur S, Ahuja N, Kohli RK (2013) β-Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma 250:691–700

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Fernández-Aparicio M, Andolfi A, Basso S, Rubiales D, Evidente A (2014) Effect of fungal and plant metabolites on brommrapes (Orobanche and Phelipanche spp.) seed germination and radicle growth. J Agric Food Chem 62:10485–10492

    Article  CAS  PubMed  Google Scholar 

  • Daugsch A, Moraes CS, Fort P, Park YK (2008) Brazilian red propolis—chemical composition and botanical origin. Evid Based Complement Alternat Med 5:435–441

    Article  PubMed  Google Scholar 

  • Fernandes-Silva CC, Lima CA, Salatino MLF, Salatino A, Mayworm MAS (2015) Composition of the volatile fraction of a sample of Brazilian green propolis and its phytotoxic activity. J Sci Food Agric. doi:10.1002/jsfa.7045

    PubMed  Google Scholar 

  • Gerrits PO (1991) The application of glycol methacrylate in histotechnology; some fundamental principles. Department of Anatomy and Embryology, State University Groningen, Groningen

    Google Scholar 

  • Ioshida MD, Young MCM, Lago JHG (2010) Chemical composition and antifungal activity of essential oil from Brazilian propolis. J Essent Oil Bear Plant 13:633–637

    Article  CAS  Google Scholar 

  • Ishida VFD, Negri G, Salatino A, Bandeira MFCL (2011) A new type of Brazilian propolis: prenylated benzophenones in propolis from Amazon and effects against cariogenic bacteria. Food Chem 125:966–972

    Article  CAS  Google Scholar 

  • Ishii-Iwamoto EL, Coelho EMP, Reis B, Moscheta IS, Bonato CM (2012) Effects of monoterpenes on physiological processes during seed germination and seedling growth. Curr Bioact Compd 8:5064

    Google Scholar 

  • Kaskoniene V, Kaskonas P, Maruska A, Kubiliene L (2014) Chemometric analysis of volatiles of propolis from different regions using static GC–MS. Cent Eur J Chem 12:736–746

    Article  CAS  Google Scholar 

  • Klinger H, Frosch S, Wagner E (1991) In vitro effects of monoterpenes on chloroplast membranes. Photosynth Res 28:109–118

    Article  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Kordali S, Cakir A, Sutay S (2007) Inhibitory effects of monoterpenes on seed germination and seedling growth. Z Naturforsch 62c:207–214

    Google Scholar 

  • Kusumoto T, Miyamoto T, Higuchi R, Doi S, Sugimoto H, Yamada H (2001) Isolation and structures of two new compounds from the essential oil of Brazilian propolis. Chem Pharm Bull 49:1207–1209

    Article  CAS  PubMed  Google Scholar 

  • Macías F, Castellano D, Molinillo JG (2000) Search for a standard phytotoxic bioassays for allelochemicals. Selection of standard target species. J Agric Food Chem 48:2512–2521

    Article  PubMed  Google Scholar 

  • Melliou E, Stratis E, Chinou I (2007) Volatile constituents of propolis from various regions of Greece–antimicrobial activity. Food Chem 103:375–380

    Article  CAS  Google Scholar 

  • Moura SAL, Negri G, Salatino A, Lima LDD, Dourado LPA, Mendes JB, Andrade SP, Ferreira M, Cara DC (2011) Aqueous extract of Brazilian green propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evid Based Complement Alternat Med. doi:10.1093/ecam/nep112

    Google Scholar 

  • Murakami C, Cardoso FL, Mayworm MAS (2009) Potencial fitotóxico de extratos foliares de Aloe arborescens Miller (Asphodelaceae) produzidos em diferentes épocas do ano. Acta Bot Bras 23:111–117

    Article  Google Scholar 

  • Naik DG, Vaidya HS, Namjoshi TP (2013) Essential oil of Indian propolis: chemical composition and repellency against the honeybee Apis-flora. Chem Biodivers 10:649–657

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:213–217

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203

    Article  CAS  PubMed  Google Scholar 

  • O’brien TP, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Oliva M, Dunand C (2007) Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis. New Phytol 106:37–43

    Article  Google Scholar 

  • Oliveira AP, França HS, Kuster RM, Teixeira LA, Rocha LM (2010) Chemical composition and antibacterial activity of Brazilian propolis essential oil. J Venom Anim Toxins Trop Dis 16:121–130

    Article  CAS  Google Scholar 

  • Perotti JC, Rodrigues-Correa KCS, Fett-Neto AG (2014) Control of resin production in Araucaria angustifolia, an ancient South American conifer. Plant Biol 17:852–859

    Article  Google Scholar 

  • Pino JA, Marbot R, Delgado A, Zumárraga C, Sauri E (2006) Volatile constituents of propolis from honey bees and stingless bees from Yucatán. J Essent Oil Res 18:53–56

    Article  CAS  Google Scholar 

  • Prodhan A, Funada R, Ohtani J, Abe H, Fukazawa K (1995) Orientation of microfibrils and microtubules in developing tension-wood fibers of Japanese ash (Fraxinus mandshurica var. japonica). Planta 196:577–585

    Article  CAS  Google Scholar 

  • Salatino A, Teixeira EW, Negri G, Message D (2005) Origin and chemical variation of Brazilian propolis. Evid Based Complement Alternat Med 2:33–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Salatino A, Fernandes-Silva CC, Righi AA, Salatino MLF (2011) Propolis research and the chemistry of plant products. Nat Prod Rep 28:925–936

    Article  CAS  PubMed  Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M (2008) Role Of Ethylene In acclimation to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    Article  CAS  Google Scholar 

  • Simionatto E, Facco JT, Morel AF, Giacomelli SR, Linares CEB (2012) Chiral analysis of monoterpenes in volatile oils from propolis. J Am Oil Chem Soc 57:1240–1243

    CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98:1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viegas M, Bassoli D (2007) Utilização do índice de retenção linear para caracterização de compostos voláteis em café solúvel utilizando gc-ms e coluna hp-innowax. Quim Nova 3:2031–2034

    Article  Google Scholar 

  • Vokou D, Douvli P, Blionis GJ, Halley JM (2003) Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J Chem Ecol 29:2281–2301

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Macias FA, Fischer NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    Article  CAS  PubMed  Google Scholar 

  • Zunino MP, Zygadlo JA (2004) Effect of monoterpenes on lipid oxidation in maize. Planta 219:303–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AS and MLFS are fellow researchers of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil). The authors thank Aline Bertinatto Cruz for assistance in chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Salatino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayworm, M.A.S., dos Santos, A.B., Melo-de-Pinna, G.F.A. et al. Monoterpenes from the essential oil from Brazilian propolis affect seedling cellular elongation. Braz. J. Bot 40, 609–615 (2017). https://doi.org/10.1007/s40415-017-0366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0366-3

Keywords

Navigation