Skip to main content

Advertisement

Log in

AT2 and MAS (but not AT1) angiotensinergic receptors in the medial amygdaloid nucleus modulate the baroreflex activity in rats

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The medial amygdaloid nucleus (MeA) is a limbic structure that has been demonstrated to be part of the central circuitry regulating baroreflex function. However, the local neurochemical mechanisms involved in baroreflex control by this forebrain structure is poorly understood. Thus, in the present study, we investigated the specific role of AT1, AT2, and MAS angiotensinergic receptors within the MeA in baroreflex responses in unanesthetized rats. For this, the baroreflex function was assessed using both the pharmacological approach via intravenous infusion of vasoactive agents and the sequence analysis technique. Using the pharmacological approach, we observed that bilateral microinjection of the selective AT2 receptor antagonist PD123319 into the MeA increased the tachycardia evoked by blood pressure decrease, but without affecting the reflex bradycardia caused by blood pressure increase. Besides, bilateral microinjection of the selective MAS receptor antagonist A-779 decreased both tachycardic and bradycardic responses of the baroreflex. The sequence analysis technique indicated that PD123319 into the MeA increased baroreflex effectiveness index while A-779 had an opposite effect. Treatment of the MeA with the selective AT1 receptor antagonist losartan did not affect baroreflex function assessed by either the pharmacological approach or sequence analysis technique. Overall, these findings provide evidence that MAS receptor within the MeA plays a facilitatory role in baroreflex function, whereas local AT2 receptor inhibits cardiac baroreflex responses. Results also indicate that AT1 receptor within the MeA is not involved in the control of baroreflex function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fontes MAP, Martins Lima A, Dos Santos RAS (2016) Brain angiotensin-(1–7)/Mas axis: a new target to reduce the cardiovascular risk to emotional stress. Neuropeptides 56:9–17. https://doi.org/10.1016/j.npep.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Gironacci MM, Carbajosa NAL, Goldstein J, Cerrato BD (2013) Neuromodulatory role of angiotensin-(1–7) in the central nervous system. Clin Sci 125:57–65. https://doi.org/10.1042/CS20120652

    Article  CAS  PubMed  Google Scholar 

  3. Head GA, Saigusa T, Mayorov DN (2002) Angiotensin and baroreflex control of the circulation. Brazilian J Med Biol Res 35:1047–1059. https://doi.org/10.1590/S0100-879X2002000900005

    Article  CAS  Google Scholar 

  4. Jackson L, Eldahshan W, Fagan S, Ergul A (2018) Within the brain: the renin angiotensin system. Int J Mol Sci 19:876. https://doi.org/10.3390/ijms19030876

    Article  CAS  PubMed Central  Google Scholar 

  5. Miller AJ, Arnold AC (2018) The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 29:231–243. https://doi.org/10.1007/s10286-018-0572-5

    Article  PubMed  Google Scholar 

  6. Pan H-L (2004) Brain angiotensin II and synaptic transmission. Neurosci 10:422–431. https://doi.org/10.1177/1073858404264678

    Article  CAS  Google Scholar 

  7. Fraga-Silva RA, Ferreira AJ, dos Santos RAS (2013) Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor pathway in hypertension. Curr Hypertens Rep 15:31–38. https://doi.org/10.1007/s11906-012-0324-1

    Article  CAS  PubMed  Google Scholar 

  8. Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG (2015) Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Pharmacol Rev 67:754–819. https://doi.org/10.1124/pr.114.010454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  10. Miller AJ, Arnold AC (2019) The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 29:231–243. https://doi.org/10.1007/s10286-018-0572-5

    Article  PubMed  Google Scholar 

  11. Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–128. https://doi.org/10.1016/S0361-9230(99)00237-3

    Article  CAS  PubMed  Google Scholar 

  12. Abdulla MH, Johns EJ (2014) Nitric oxide impacts on angiotensin AT2 receptor modulation of high-pressure baroreflex control of renal sympathetic nerve activity in anaesthetized rats. Acta Physiol 210:832–844. https://doi.org/10.1111/apha.12207

    Article  CAS  Google Scholar 

  13. de Kloet AD, Steckelings UM, Sumners C (2017) Protective angiotensin type 2 receptors in the brain and hypertension. Curr Hypertens Rep 19:46. https://doi.org/10.1007/s11906-017-0746-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliveira DR, Santos RAS, Santos GFP, Khosla MC, Campagnole-Santos MJ (1996) Changes in the baroreflex control of heart rate produced by central infusion of selective angiotensin antagonists in hypertensive rats. Hypertension 27:1284–1290. https://doi.org/10.1161/01.HYP.27.6.1284

    Article  CAS  PubMed  Google Scholar 

  15. Alzamora AC, Santos RAS, Campagnole-Santos MJ (2006) Baroreflex modulation by angiotensins at the rat rostral and caudal ventrolateral medulla. Am J Physiol Integr Comp Physiol 290:R1027–R1034. https://doi.org/10.1152/ajpregu.00852.2004

    Article  CAS  Google Scholar 

  16. Diz DI, Arnold AC, Nautiyal M, Isa K, Shaltout HA, Tallant EA (2011) Angiotensin peptides and central autonomic regulation. Curr Opin Pharmacol 11:131–137. https://doi.org/10.1016/J.COPH.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dampney RAL (2015) Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol - Regul Integr Comp Physiol 309:R429–R443. https://doi.org/10.1152/ajpregu.00051.2015

    Article  CAS  PubMed  Google Scholar 

  18. Myers B (2017) Corticolimbic regulation of cardiovascular responses to stress. Physiol Behav 172:49–59. https://doi.org/10.1016/j.physbeh.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  19. Fortaleza EAT, Ferreira-Junior NC, Lagatta DC, Resstel LBM, Corrêa FMA (2015) The medial amygdaloid nucleus modulates the baroreflex activity in conscious rats. Auton Neurosci 193:44–50. https://doi.org/10.1016/j.autneu.2015.07.003

    Article  PubMed  Google Scholar 

  20. Neckel H, Quagliotto E, Casali KR, Montano N, Dal Lago P, Rasia-Filho AA (2012) Glutamate and GABA in the medial amygdala induce selective central sympathetic/parasympathetic cardiovascular responses. Can J Physiol Pharmacol 90:525–536. https://doi.org/10.1139/y2012-024

    Article  CAS  PubMed  Google Scholar 

  21. Quagliotto E, Casali KR, Dal Lago P, Rasia-Filho AA (2014) Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats. Brazilian J Med Biol Res 48:128–139. https://doi.org/10.1590/1414-431x20144095

    Article  Google Scholar 

  22. Quagliotto E, Neckel H, Riveiro DF, Casali KR, Mostarda C, Irigoyen MC, Dall’Ago P, Rasia-Filho AA (2008) Histamine in the posterodorsal medial amygdala modulates cardiovascular reflex responses in awake rats. Neuroscience 157:709–719. https://doi.org/10.1016/j.neuroscience.2008.09.053

    Article  CAS  PubMed  Google Scholar 

  23. Becker LK, Etelvino GM, Walther T, Santos RAS, Campagnole-Santos MJ (2007) Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Circ Physiol 293:H1416–H1424. https://doi.org/10.1152/ajpheart.00141.2007

    Article  CAS  Google Scholar 

  24. von Bohlen und Halbach O (2005) The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci 6:355–371

  25. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortès C (1997) Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 18:383–439. https://doi.org/10.1006/frne.1997.0155

    Article  CAS  PubMed  Google Scholar 

  26. Lynch KR, Hawelu-Johnson CL, Guyenet PG (1987) Localization of brain angiotensinogen mRNA by hybridization histochemistry. Brain Res 388:149–158

    Article  CAS  PubMed  Google Scholar 

  27. Almeida J, Duarte JO, Oliveira LA, Crestani CC (2015) Effects of nitric oxide synthesis inhibitor or fluoxetine treatment on depression-like state and cardiovascular changes induced by chronic variable stress in rats. Stress 18:462–474. https://doi.org/10.3109/10253890.2015.1038993

    Article  CAS  PubMed  Google Scholar 

  28. Costa-Ferreira W, Vieira JO, Almeida J, Gomes-de-Souza L, Crestani CC (2016) Involvement of type 1 angiontensin II receptor (AT1) in cardiovascular changes induced by chronic emotional stress: comparison between homotypic and heterotypic stressors. Front Pharmacol 7:262. https://doi.org/10.3389/fphar.2016.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Crestani CC, Alves FHF, Busnardo C, Resstel LBM, Correa FMA (2010) N-methyl-d-aspartate glutamate receptors in the hypothalamic paraventricular nucleus modulate cardiac component of the baroreflex in unanesthetized rats. Neurosci Res 67:317–326. https://doi.org/10.1016/j.neures.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  30. Engi SA, Planeta CS, Crestani CC (2016) Effect of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats: influence of exercise training. PLoS One 11:e0146974. https://doi.org/10.1371/journal.pone.0146974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vieira JO, Duarte JO, Costa-Ferreira W, Morais-Silva G, Marin MT, Crestani CC (2018) Sex differences in cardiovascular, neuroendocrine and behavioral changes evoked by chronic stressors in rats. Prog Neuro-Psychopharmacology Biol Psychiatry 81:426–437. https://doi.org/10.1016/j.pnpbp.2017.08.014

    Article  Google Scholar 

  32. Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A (2001) Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Integr Comp Physiol 280:R744–R751. https://doi.org/10.1152/ajpregu.2001.280.3.R744

    Article  Google Scholar 

  33. Busnardo C, Tavares RF, Correa FMA (2014) Angiotensinergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates the pressor response to acute restraint stress in rats. Neuroscience 270:12–19. https://doi.org/10.1016/j.neuroscience.2014.03.064

    Article  CAS  PubMed  Google Scholar 

  34. Michelini LC, Bonagamba LG (1990) Angiotensin II as a modulator of baroreceptor reflexes in the brainstem of conscious rats. Hypertension 15:I45–I50

    Article  CAS  PubMed  Google Scholar 

  35. Oscar CG, Müller-Ribeiro FC d F, de Castro LG, Martins Lima A, Campagnole-Santos MJ, RAS S, Xavier CH, MAP F (2015) Angiotensin-(1-7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Res 1594:183–189. https://doi.org/10.1016/j.brainres.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, Sydney

  37. Crestani CC (2016) Emotional stress and cardiovascular complications in animal models: a review of the influence of stress type. Front Physiol 7:251. https://doi.org/10.3389/fphys.2016.00251

    Article  PubMed  PubMed Central  Google Scholar 

  38. de Andrade O, Borghi SM, de Souza HCD, Fontes MAP, Martins-Pinge MC (2014) Paraventricular nucleus of hypothalamus participates in the sympathetic modulation and spontaneous fluctuation of baroreflex during head up tilt in unanesthetized rats. Neurosci Lett 558:1–7. https://doi.org/10.1016/j.neulet.2013.09.039

    Article  CAS  PubMed  Google Scholar 

  39. Freund M, Walther T, von Bohlen und Halbach O (2012) Immunohistochemical localization of the angiotensin-(1–7) receptor Mas in the murine forebrain. Cell Tissue Res 348:29–35. https://doi.org/10.1007/s00441-012-1354-3

    Article  CAS  PubMed  Google Scholar 

  40. Britto RR, Santos RAS, Fagundes-Moura CR, Khosla MC, Campagnole-Santos MJ (1997) Role of angiotensin-(1-7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension 30:549–556. https://doi.org/10.1161/01.HYP.30.3.549

    Article  CAS  PubMed  Google Scholar 

  41. Campagnole-Santos MJ, Heringer SB, Batista EN, Khosla MC, Santos RA (1992) Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Physiol Integr Comp Physiol 263:R89–R94. https://doi.org/10.1152/ajpregu.1992.263.1.R89

    Article  CAS  Google Scholar 

  42. Lin KS, Chan JY, Chan SH (1997) Involvement of AT2 receptors at NRVL in tonic baroreflex suppression by endogenous angiotensins. Am J Physiol Circ Physiol 272:H2204–H2210. https://doi.org/10.1152/ajpheart.1997.272.5.H2204

    Article  CAS  Google Scholar 

  43. Luoh H, Chan SH (1998) Participation of AT1 and AT2 receptor subtypes in the tonic inhibitory modulation of baroreceptor reflex response by endogenous angiotensins at the nucleus tractus solitarii in the rat. Brain Res 782:73–82. https://doi.org/10.1016/S0006-8993(97)01198-0

    Article  CAS  PubMed  Google Scholar 

  44. Albrecht D, NITSCHKE T, HALBACH OVONBOHLENUND (2000) Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic [TGR(mREN-2)27] rats. FASEB J 14:925–931. https://doi.org/10.1096/fasebj.14.7.925

    Article  CAS  PubMed  Google Scholar 

  45. Barnes KL, Knowles WD, Ferrario CM (1990) Angiotensin II and angiotensin (1–7) excite neurons in the canine medulla in vitro. Brain Res Bull 24:275–280. https://doi.org/10.1016/0361-9230(90)90215-L

    Article  CAS  PubMed  Google Scholar 

  46. Felix D, Khosla MC, Barnes KL, Imboden H, Montani B, Ferrario CM (1991) Neurophysiological responses to angiotensin-(1-7). Hypertension 17:1111–1114. https://doi.org/10.1161/01.HYP.17.6.1111

    Article  CAS  PubMed  Google Scholar 

  47. Xing J, Kong J, Lu J, Li J (2012) Angiotensin-(1-7) inhibits neuronal activity of dorsolateral periaqueductal gray via a nitric oxide pathway. Neurosci Lett 522:156–161. https://doi.org/10.1016/j.neulet.2012.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Crestani CC, Alves FHF, Resstel LBM, Correa FMA (2008) Bed nucleus of the stria terminalis α1-adrenoceptor modulates baroreflex cardiac component in unanesthetized rats. Brain Res 1245:108–115. https://doi.org/10.1016/j.brainres.2008.09.082

    Article  CAS  PubMed  Google Scholar 

  49. Crestani CC, Tavares RF, Alves FHF, Resstel LBM, Correa FMA (2010) Effect of acute restraint stress on the tachycardiac and bradycardiac responses of the baroreflex in rats. Stress 13:61–72. https://doi.org/10.3109/10253890902927950

    Article  CAS  PubMed  Google Scholar 

  50. GLICK G, BRAUNWALD E, Lewis RM (1965) Relative roles of the sympathetic and parasympathetic nervous systems in the reflex control of heart rate. Circ Res 16:363–375. https://doi.org/10.1161/01.RES.16.4.363

    Article  CAS  PubMed  Google Scholar 

  51. Sullebarger JT, Liang CS, Woolf PD, Willick AE, Richeson JF (1990) Comparison of phenylephrine bolus and infusion methods in baroreflex measurements. J Appl Physiol 69:962–967. https://doi.org/10.1152/jappl.1990.69.3.962

    Article  CAS  PubMed  Google Scholar 

  52. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bauer RM, Vela MB, Simon T, Waldrop TG (1988) A GABAergic mechanism in the posterior hypothalamus modulates baroreflex bradycardia. Brain Res Bull 20:633–641. https://doi.org/10.1016/0361-9230(88)90224-9

    Article  CAS  PubMed  Google Scholar 

  54. Crestani CC, Alves FHF, Resstel LBM, Corrêa FM d A (2006) The bed nucleus of the stria terminalis modulates baroreflex in rats. Neuroreport 17:1531–1535. https://doi.org/10.1097/01.wnr.0000236854.40221.40

    Article  PubMed  Google Scholar 

  55. Inui K, Nomura J, Murase S, Nosaka S (1995) Facilitation of the arterial baroreflex by the preoptic area in anaesthetized rats. J Physiol 488(2):521–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fluckiger J-P, Sonnay M, Boillat N, Atkinson J (1985) Attenuation of the baroreceptor reflex by general anesthetic agents in the normotensive rat. Eur J Pharmacol 109:105–109. https://doi.org/10.1016/0014-2999(85)90545-X

    Article  CAS  PubMed  Google Scholar 

  57. Kotrly KJ, Ebert TJ, Vucins E, Igler FO, Barney JA, Kampine JP (1984) Baroreceptor reflex control of heart rate during isoflurane anesthesia in humans. Anesthesiology 60(3):173–179

  58. Nagasaki G, Tanaka M, Nishikawa T (2001) The recovery profile of baroreflex control of heart rate after isoflurane or sevoflurane anesthesia in humans. Anesth Analg 93:1127–1131. https://doi.org/10.1097/00000539-200111000-00012

    Article  CAS  PubMed  Google Scholar 

  59. Grippo AJ, Moffitt JA, Johnson AK (2008) Evaluation of baroreceptor reflex function in the chronic mild stress rodent model of depression. Psychosom Med 70:435–443. https://doi.org/10.1097/PSY.0b013e31816ff7dd

    Article  PubMed  PubMed Central  Google Scholar 

  60. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK (1998) Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension 32:1039–1043. https://doi.org/10.1161/01.HYP.32.6.1039

    Article  CAS  PubMed  Google Scholar 

  61. Zambrano LI, Pontes RB, Garcia ML, Nishi EE, Nogueira FN, Higa EMS, Cespedes JG, Bergamaschi CT, Campos RR (2019) Pattern of sympathetic vasomotor activity in a model of hypertension induced by nitric oxide synthase blockade. Physiol Rep 7. https://doi.org/10.14814/phy2.14183

  62. Fortaleza EAT, Tavares RF, Corrêa FMA (2009) The medial amygdaloid nucleus modulates cardiovascular responses to acute restraint in rats. Neuroscience 159:717–726. https://doi.org/10.1016/j.neuroscience.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  63. Kubo T, Okatani H, Nishigori Y, Hagiwara Y, Fukumori R, Goshima Y (2004) Involvement of the medial amygdaloid nucleus in restraint stress-induced pressor responses in rats. Neurosci Lett 354:84–86

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by FAPESP (grant nos. 2015/05922-9 and 2017/19249-0, and PhD fellowship to WCF process no. 2016/05218-2), CNPq (grant no. 456405/2014-3), and Scientific Support and Development Program of School of Pharmaceutical Sciences (UNESP). CCC is a CNPq research fellow (process nos. 305583/2015-8 and 304108/2018-9).

Author information

Authors and Affiliations

Authors

Contributions

WCF, LGS, and CCC contributed to the conception and design of the work. WCF and LGS contributed to the acquisition and analysis, whereas all authors contributed to data interpretation. WCF and CCC drafted the manuscript. LGS critically revised the manuscript and CCC approved the final version to be published.

Corresponding author

Correspondence to Carlos C. Crestani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa-Ferreira, W., Gomes-de-Souza, L. & Crestani, C.C. AT2 and MAS (but not AT1) angiotensinergic receptors in the medial amygdaloid nucleus modulate the baroreflex activity in rats. Pflugers Arch - Eur J Physiol 471, 1173–1182 (2019). https://doi.org/10.1007/s00424-019-02301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02301-3

Keywords

Navigation