Skip to main content

Advertisement

Log in

AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

mPFC:

Medial prefrontal cortex

PL:

Prelimbic cortex

RAS:

Renin–angiotensin system

ARS:

Acute restraint stress

ACE:

Angiotensin-converting enzyme

MAP:

Mean arterial pressure

PAP:

Pulsatile arterial pressure

HR:

Heart rate

TT:

Tail temperature

PVN:

Paraventricular nucleus of hypothalamus

Ang-I:

Angiotensin I

Ang-II:

Angiotensin II

RVLM:

Rostral ventrolateral medulla

CVLM:

Caudal ventrolateral medulla

References

  • Armando I, Carranza A, Nishimura Y et al (2001) Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation Stress. Endocrinology 142:3880–3889. doi:10.1210/endo.142.9.8366

    Article  CAS  PubMed  Google Scholar 

  • Barron BA, Van Loon GR (1989) Role of sympathoadrenomedullary system in cardiovascular response to stress in rats. J Auton Nerv Syst 28:179–187

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MA, Ishiguro M, Hossain M et al (2009) Binding sites of valsartan, candesartan and losartan with angiotensin II receptor 1 subtype by molecular modeling. Life Sci 85:136–140. doi:10.1016/j.lfs.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  • Blessing WW, Seaman B (2003) 5-hydroxytryptamine(2A) receptors regulate sympathetic nerves constricting the cutaneous vascular bed in rabbits and rats. Neuroscience 117:939–948

    Article  CAS  PubMed  Google Scholar 

  • Bosnyak S, Jones ES, Christopoulos A et al (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303. doi:10.1042/CS20110036

    Article  CAS  Google Scholar 

  • Braszko JJ, Kulakowska A, Winnicka MM (2003) Effects of angiotensin II and its receptor antagonists on motor activity and anxiety in rats. J Physiol Pharmacol 54:271–281

    CAS  PubMed  Google Scholar 

  • Bregonzio C, Armando I, Ando H et al (2003) Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am J Physiol Gastrointest Liver Physiol 285:G414–G423. doi:10.1152/ajpgi.00058.2003

    Article  CAS  PubMed  Google Scholar 

  • Bregonzio C, Seltzer A, Armando I et al (2008) Angiotensin II AT(1) receptor blockade selectively enhances brain AT(2) receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress 11:457–466. doi:10.1080/10253890801892040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns SM, Wyss JM (1985) The involvement of the anterior cingulate cortex in blood pressure control. Brain Res 340:71–77

    Article  CAS  PubMed  Google Scholar 

  • Busnardo C, Alves FHF, Crestani CC et al (2013) Paraventricular nucleus of the hypothalamus glutamate neurotransmission modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Eur Neuropsychopharmacol 23:1611–1622. doi:10.1016/j.euroneuro.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  • Busnardo C, Tavares RF, Correa FM (2014) Angiotensinergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates the pressor response to acute restraint stress in rats. Neuroscience 270:12–19. doi:10.1016/j.neuroscience.2014.03.064

    Article  CAS  PubMed  Google Scholar 

  • D’Amico M, Di Filippo C, Berrino L, Rossi F (1997) AT1 receptors mediate pressor responses induced by angiotensin II in the periaqueductal gray area of rats. Life Sci 61:PL17–PL20

    PubMed  Google Scholar 

  • Dos Reis DG, Fortaleza EA, Tavares RF, Correa FM (2014) Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats. Stress 17:362–372. doi:10.3109/10253890.2014.930429

    Article  PubMed  Google Scholar 

  • Fassini A, Scopinho AA, Resstel LB, Correa FM (2014) Opioid receptors in the prelimbic cortex modulate restraint stress-induced cardiovascular responses in the rat. Neuropharmacology 85:367–374. doi:10.1016/j.neuropharm.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  • Fassini A, Scopinho AA, Resstel LBM, Corrêa FMA (2015) κ-opioid receptors in the infralimbic cortex modulate the cardiovascular responses to acute stress. Exp Physiol 100:377–387. doi:10.1113/expphysiol.2014.084020

    Article  CAS  PubMed  Google Scholar 

  • Fassini A, Resstel LBM, Corrêa FMA (2016a) Prelimbic cortex GABAA receptors are involved in the mediation of restraint stress-evoked cardiovascular responses. Stress 19:576–584. doi:10.1080/10253890.2016.1231177

    Article  CAS  PubMed  Google Scholar 

  • Fassini A, Scopinho AA, Resstel LBM, Corrêa FMA (2016b) NOP receptors in the prelimbic cortex have an inhibitory influence on cardiovascular responses induced by restraint stress. Neuropeptides 57:35–44. doi:10.1016/j.npep.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  • Hardy SG, Holmes DE (1988) Prefrontal stimulus-produced hypotension in rat. Exp Brain Res 73:249–255

    Article  CAS  PubMed  Google Scholar 

  • Imaki T, Shibasaki T, Hotta M, Demura H (1993) Intracerebroventricular administration of corticotropin-releasing factor induces c-fos mRNA expression in brain regions related to stress responses: comparison with pattern of c-fos mRNA induction after stress. Brain Res 616:114–125

    Article  CAS  PubMed  Google Scholar 

  • Irvine RJ, White J, Chan R (1997) The influence of restraint on blood pressure in the rat. J Pharmacol Toxicol Methods 38:157–162

    Article  CAS  PubMed  Google Scholar 

  • Johren O, Inagami T, Saavedra JM (1995) AT1A, AT1B, and AT2 angiotensin II receptor subtype gene expression in rat brain. NeuroReport 6:2549–2552

    Article  CAS  PubMed  Google Scholar 

  • Krieman MJ, Hershock DM, Greenberg IJ, Vogel WH (1992) Effects of adinazolam on plasma catecholamine, heart rate and blood pressure responses in stressed and non-stressed rats. Neuropharmacology 31:33–38

    Article  CAS  PubMed  Google Scholar 

  • Lenkei Z, Palkovits M, Corvol P, Llorens-Cortès C (1997) Expression of Angiotensin Type-1 (AT1) and Type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 18:383–439. doi:10.1006/frne.1997.0155

    Article  CAS  PubMed  Google Scholar 

  • Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C (1998) Distribution of angiotensin type-1 receptor messenger RNA expression in the adult rat brain. Neuroscience 82:827–841

    Article  CAS  PubMed  Google Scholar 

  • Leong DS, Terrón JA, Falcón-Neri A et al (2002) Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT(1A), AT(1B) and AT(2) receptors. Neuroendocrinology 75:227–240

    Article  CAS  PubMed  Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system.An immunohistochemical study. Neuroendocrinology 40:2–24

    Article  CAS  PubMed  Google Scholar 

  • McDougall SJ, Paull JR, Widdop RE, Lawrence AJ (2000) Restraint stress: differential cardiovascular responses in Wistar-Kyoto and spontaneously hypertensive rats. Hypertension 35:126–129

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa P, Sigmund CD (2017) How is the brain renin? angiotensin system regulated? Hypertension 70:10–18. doi:10.1161/HYPERTENSIONAHA.117.08550

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson D (2007) The rat brain stereotaxic coordinates, 2a Edição. Academic Press, Australia

    Google Scholar 

  • Resstel LB, Correa FM (2006) Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Aut Neurosci 126:130–138. doi:10.1016/j.autneu.2006.02.022

    Article  Google Scholar 

  • Roks AJ, van Geel PP, Pinto YM et al (1999) Angiotensin-(1–7) is a modulator of the human renin-angiotensin system. Hypertens 34:296–301

    Article  CAS  Google Scholar 

  • Saavedra JM (1992) Brain and pituitary angiotensin. Endocr Rev 13:329–380. doi:10.1210/edrv-13-2-329

    Article  CAS  PubMed  Google Scholar 

  • Saavedra JM, Benicky J (2007) Brain and peripheral angiotensin II play a major role in stress. Stress 10:185–193. doi:10.1080/10253890701350735

    Article  CAS  PubMed  Google Scholar 

  • Saavedra JM, Ando H, Armando I et al (2004) Brain angiotensin II, an important stress hormone: regulatory sites and therapeutic opportunities. Ann N Y Acad Sci 1018:76–84. doi:10.1196/annals.1296.009

    Article  CAS  PubMed  Google Scholar 

  • Saavedra JM, Armando I, Bregonzio C et al (2006) A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology 31:1123–1134. doi:10.1038/sj.npp.1300921

    Article  CAS  PubMed  Google Scholar 

  • Tan PSP, Killinger S, Horiuchi J, Dampney RAL (2007) Baroreceptor reflex modulation by circulating angiotensin II is mediated by AT1 receptors in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 293:R2267–R2278. doi:10.1152/ajpregu.00267.2007

    Article  CAS  PubMed  Google Scholar 

  • Tavares RF, Corrêa FMA (2006) Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience 143:231–240. doi:10.1016/j.neuroscience.2006.07.030

    Article  CAS  PubMed  Google Scholar 

  • Tavares RF, Antunes-Rodrigues J, de Aguiar Correa FM (2004) Pressor effects of electrical stimulation of medial prefrontal cortex in unanesthetized rats. J Neurosci Res 77:613–620. doi:10.1002/jnr.20195

    Article  CAS  PubMed  Google Scholar 

  • Tavares RF, Correa FM, Resstel LB (2009) Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats. J Neurosci Res 87:2601–2607. doi:10.1002/jnr.22070

    Article  CAS  PubMed  Google Scholar 

  • Tedesco A, Ally A (2009) Angiotensin II type-2 (AT2) receptor antagonism alters cardiovascular responses to static exercise and simultaneously changes glutamate/GABA levels within the ventrolateral medulla. Neurosci Res 64:372–379. doi:10.1016/j.neures.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi K, Saavedra JM (1991) Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 261:R209–R216

    CAS  PubMed  Google Scholar 

  • Urata H, Healy B, Stewart RW et al (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883–890

    Article  CAS  PubMed  Google Scholar 

  • Verberne AJ, Owens NC (1998) Cortical modulation of the cardiovascular system. Prog Neurobiol 54:149–168

    Article  CAS  PubMed  Google Scholar 

  • Vianna DM, Carrive P (2005) Changes in cutaneous and body temperature during and after conditioned fear to context in the rat. Eur J Neurosci 21:2505–2512. doi:10.1111/j.1460-9568.2005.04073.x

    Article  PubMed  Google Scholar 

  • Yang G, Xi ZX, Wan Y et al (1993) Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol Signals 2:166–172

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wan Y, Zhu Y (1996) Angiotensin II–an important stress hormone. Biol Signals 5:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama C, Sasaki K (1999) Regional expressions of Fos-like immunoreactivity in rat cerebral cortex after stress; restraint and intraperitoneal lipopolysaccharide. Brain Res 816:267–275

    Article  CAS  PubMed  Google Scholar 

  • Young CN, Davisson RL (2015) Angiotensin-II, the Brain, and Hypertension. Hypertension 66:920–926. doi:10.1161/HYPERTENSIONAHA.115.03624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ivanilda A.C. Fortunato for technical help.

Funding

This work was supported by grants from CNPq (474477/2013-4) and FAEPA. Brasil is a graduate student and recipient of CAPES fellowship. Fassini is a graduate student and recipient of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) fellowship (2013/00249-9).

Author information

Authors and Affiliations

Authors

Contributions

T.F.B.S, A.F and F.M.C conception and design of research; T.F.B.S, A.F performed experiments; T.F.B.S, A.F analyzed the data; T.F.B.S, A.F and F.M.C interpreted results of experiments; T.F.B.S prepared figures; T.F.B.S drafted manuscript; T.F.B.S, A.F edited and revised manuscript; F.M.C approved final version of the manuscript.

Corresponding author

Correspondence to Taíz F. S. Brasil.

Ethics declarations

Conflicts of interest

No conflicts of interest, financial, or otherwise, are declared by the author(s).

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasil, T.F.S., Fassini, A. & Corrêa, F.M. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats. Cell Mol Neurobiol 38, 305–316 (2018). https://doi.org/10.1007/s10571-017-0518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0518-9

Keywords

Navigation