Skip to main content
Log in

Effect of temperature on FAD and NADH-derived signals and neurometabolic coupling in the mouse auditory and motor cortex

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Tight coupling of neuronal metabolism to synaptic activity is critical to ensure that the supply of metabolic substrates meets the demands of neuronal signaling. Given the impact of temperature on metabolism, and the wide fluctuations of brain temperature observed during clinical hypothermia, we examined the effect of temperature on neurometabolic coupling. Intrinsic fluorescence signals of the oxidized form of flavin adenine dinucleotide (FAD) and the reduced form of nicotinamide adenine dinucleotide (NADH), and their ratios, were measured to assess neural metabolic state and local field potentials were recorded to measure synaptic activity in the mouse brain. Brain slice preparations were used to remove the potential impacts of blood flow. Tight coupling between metabolic signals and local field potential amplitudes was observed at a range of temperatures below 29 °C. However, above 29 °C, the metabolic and synaptic signatures diverged such that FAD signals were diminished, but local field potentials retained their amplitude. It was also observed that the declines in the FAD signals seen at high temperatures (and hence the decoupling between synaptic and metabolic events) are driven by low FAD availability at high temperatures. These data suggest that neurometabolic coupling, thought to be critical for ensuring the metabolic health of the brain, may show temperature dependence, and is related to temperature-dependent changes in FAD supplies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aihara H, Okada Y, Tamaki N (2001) The effects of cooling and rewarming on the neuronal activity of pyramidal neurons in guinea pig hippocampal slices. Brain Res 893:36–45

    Article  CAS  PubMed  Google Scholar 

  2. Al-Juboori SI, Dondzillo A, Stubblefield EA, Felsen G, Lei TC, Klug A (2013) Light scattering properties vary across different regions of the adult mouse brain. PLoS One 8:e67626. doi:10.1371/journal.pone.0067626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alva N, Palomeque J, Carbonell T (2013) Oxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia? Oxidative Med Cell Longev 2013:957054. doi:10.1155/2013/957054

    Article  CAS  Google Scholar 

  4. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. doi:10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  5. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563. doi:10.1056/NEJMoa003289

    Article  PubMed  Google Scholar 

  6. Burlington RF, Wiebers JE (1967) The effect of temperature on glycolysis in brain and skeletal muscle from a hibernator and a non-hibernator. Physiol Zool 40:201–206

  7. Bingmann D, Kolde G (1982) PO2-profiles in hippocampal slices of the guinea pig. Exp Brain Res 48:89–96

    Article  CAS  PubMed  Google Scholar 

  8. Buzatu S (2009) The temperature-induced changes in membrane potential. Riv Biol 102:199–217

    PubMed  Google Scholar 

  9. Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24:573–578

    Article  CAS  PubMed  Google Scholar 

  10. Christoforides C, Hedley-Whyte J (1969) Effect of temperature and hemoglobin concentration on solubility of O2 in blood. J Appl Physiol 27:592–596

    CAS  PubMed  Google Scholar 

  11. Cooper JM, Gadian DG, Jentschke S, Goldman A, Munoz M, Pitts G, Banks T, Chong WK, Hoskote A, Deanfield J, Baldeweg T, de Haan M, Mishkin M, Vargha-Khadem F (2015) Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence. Cereb Cortex 25:1469–1476. doi:10.1093/cercor/bht332

    Article  PubMed  Google Scholar 

  12. Costa C, Belcastro V, Tozzi A, Di Filippo M, Tantucci M, Siliquini S, Autuori A, Picconi B, Spillantini MG, Fedele E, Pittaluga A, Raiteri M, Calabresi P (2008) Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J Neurosci 28:8040–8052. doi:10.1523/JNEUROSCI.1947-08.2008

    Article  CAS  PubMed  Google Scholar 

  13. Coutinho V, Mutoh H, Knopfel T (2004) Functional topology of the mossy fibre-granule cell—Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum. Eur J Neurosci 20:740–748. doi:10.1111/j.1460-9568.2004.03533.x

    Article  CAS  PubMed  Google Scholar 

  14. Cruikshank SJ, Rose HJ, Metherate R (2002) Auditory thalamocortical synaptic transmission in vitro. J Neurophysiol 87:361–384

    Article  PubMed  Google Scholar 

  15. de la Pena E, Malkia A, Vara H, Caires R, Ballesta JJ, Belmonte C, Viana F (2012) The influence of cold temperature on cellular excitability of hippocampal networks. PLoS One 7:e52475. doi:10.1371/journal.pone.0052475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dong B (1997) Progresses in the study of ultrasonics in China, 1997. Zhonghua Yi Xue Za Zhi 77:927–929

    CAS  PubMed  Google Scholar 

  17. Dufour S, Rousse N, Canioni P, Diolez P (1996) Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J 314(Pt 3):743–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using microManager. Curr Protoc Mol Biol Chapter 14:Unit14 20. doi:10.1002/0471142727.mb1420s92

  19. Erecinska M, Thoresen M, Silver IA (2003) Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab 23:513–530. doi:10.1097/01.WCB.0000066287.21705.21

    Article  CAS  PubMed  Google Scholar 

  20. Foster KA, Beaver CJ, Turner DA (2005) Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices. Neuroscience 132:645–657. doi:10.1016/j.neuroscience.2005.01.040

    Article  CAS  PubMed  Google Scholar 

  21. Galeffi F, Somjen GG, Foster KA, Turner DA (2011) Simultaneous monitoring of tissue PO2 and NADH fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices. J Cereb Blood Flow Metab 31:626–639. doi:10.1038/jcbfm.2010.136

    Article  CAS  PubMed  Google Scholar 

  22. Gao W, Chen G, Reinert KC, Ebner TJ (2006) Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci 26:8377–8387. doi:10.1523/JNEUROSCI.2434-06.2006

    Article  CAS  PubMed  Google Scholar 

  23. Garofalo O, Cox DW, Bachelard HS (1988) Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro. J Neurochem 51:172–176

    Article  CAS  PubMed  Google Scholar 

  24. Gerich FJ, Funke F, Hildebrandt B, Fasshauer M, Muller M (2009) H(2)O(2)-mediated modulation of cytosolic signaling and organelle function in rat hippocampus. Pflugers Arch 458:937–952. doi:10.1007/s00424-009-0672-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670. doi:10.1016/S0140-6736(05)17946-X

    Article  PubMed  Google Scholar 

  26. Gosseries O, Demertzi A, Noirhomme Q, Tshibanda J, Boly M, Op de Beeck M, Hustinx R, Maquet P, Salmon E, Moonen G, Luxen A, Laureys S, De Tiege X (2008) Functional neuroimaging (fMRI, PET and MEG): what do we measure? Rev Med Liege 63:231–237

    CAS  PubMed  Google Scholar 

  27. Grosser E, Hirt U, Janc OA, Menzfeld C, Fischer M, Kempkes B, Vogelgesang S, Manzke TU, Opitz L, Salinas-Riester G, Muller M (2012) Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Neurobiol Dis 48:102–114. doi:10.1016/j.nbd.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  28. Hagerdal M, Harp J, Siesjo BK (1975) Effect of hypothermia upon organic phosphates, glycolytic metabolites, citric acid cycle intermediates and associated amino acids in rat cerebral cortex. J Neurochem 24:743–748

    Article  CAS  PubMed  Google Scholar 

  29. Hajos N, Mody I (2009) Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J Neurosci Methods 183:107–113. doi:10.1016/j.jneumeth.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hajos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, Freund TF, Paulsen O (2009) Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci 29:319–327. doi:10.1111/j.1460-9568.2008.06577.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hillered L, Chan PH (1988) Effects of arachidonic acid on respiratory activities in isolated brain mitochondria. J Neurosci Res 19:94–100. doi:10.1002/jnr.490190113

    Article  CAS  PubMed  Google Scholar 

  32. Hishida R, Kudoh M, Shibuki K (2014) Multimodal cortical sensory pathways revealed by sequential transcranial electrical stimulation in mice. Neurosci Res 87:49–55. doi:10.1016/j.neures.2014.07.004

    Article  PubMed  Google Scholar 

  33. Hodgman C (1958-1959) Handbook of chemistry and physics—fortieth edition. Chemical Rubber Publishing, Co., Cleveland

    Google Scholar 

  34. Horie M, Tsukano H, Takebayashi H, Shibuki K (2015) Specific distribution of non-phosphorylated neurofilaments characterizing each subfield in the mouse auditory cortex. Neurosci Lett 606:182–187. doi:10.1016/j.neulet.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  35. Huchzermeyer C, Albus K, Gabriel HJ, Otahal J, Taubenberger N, Heinemann U, Kovacs R, Kann O (2008) Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J Neurosci 28:1153–1162. doi:10.1523/JNEUROSCI.4105-07.2008

    Article  CAS  PubMed  Google Scholar 

  36. Husson TR, Issa NP (2009) Functional imaging with mitochondrial flavoprotein autofluorescence theory, practice, and applications. Front Neurosci 221–253. doi:10.1201/9781420076851

  37. Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556. doi:10.1056/NEJMoa012689

    Article  Google Scholar 

  38. Ivanov A, Zilberter Y (2011) Critical state of energy metabolism in brain slices: the principal role of oxygen delivery and energy substrates in shaping neuronal activity. Front Neuroenerg 3:9. doi:10.3389/fnene.2011.00009

    CAS  Google Scholar 

  39. Ivanov AI, Malkov AE, Waseem T, Mukhtarov M, Buldakova S, Gubkina O, Zilberter M, Zilberter Y (2014) Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices. J Cereb Blood Flow Metab 34:397–407. doi:10.1038/jcbfm.2013.222

    Article  CAS  PubMed  Google Scholar 

  40. Ivanov AI, Bernard C, Turner DA (2015) Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiol Dis 75:1–14. doi:10.1016/j.nbd.2014.12.013

    Article  PubMed  CAS  Google Scholar 

  41. Jarmuszkiewicz W, Woyda-Ploszczyca A, Koziel A, Majerczak J, Zoladz JA (2015) Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria. Free Radic Biol Med 83:12–20. doi:10.1016/j.freeradbiomed.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  42. Ji S, Chance B, Stuart BH, Nathan R (1977) Two-dimensional analysis of the redox state of the rat cerebral cortex in vivo by NADH fluorescence photography. Brain Res 119:357–373

    Article  CAS  PubMed  Google Scholar 

  43. Johnston D, Brown TH (1981) Giant synaptic potential hypothesis for epileptiform activity. Science 211:294–297

    Article  CAS  PubMed  Google Scholar 

  44. Jotty K, Shuttleworth CW, Valenzuela CF (2015) Characterization of activity-dependent changes in flavoprotein fluorescence in cerebellar slices from juvenile rats. Neurosci Lett 584:17–22. doi:10.1016/j.neulet.2014.09.052

    Article  CAS  PubMed  Google Scholar 

  45. Kaibara T, Sutherland GR, Colbourne F, Tyson RL (1999) Hypothermia: depression of tricarboxylic acid cycle flux and evidence for pentose phosphate shunt upregulation. J Neurosurg 90:339–347. doi:10.3171/jns.1999.90.2.0339

    Article  CAS  PubMed  Google Scholar 

  46. Kann O, Kovacs R, Njunting M, Behrens CJ, Otahal J, Lehmann TN, Gabriel S, Heinemann U (2005) Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128:2396–2407. doi:10.1093/brain/awh568

    Article  PubMed  Google Scholar 

  47. Kann O, Huchzermeyer C, Kovacs R, Wirtz S, Schuelke M (2011) Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain 134:345–358. doi:10.1093/brain/awq333

    Article  PubMed  Google Scholar 

  48. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103. doi:10.1126/science.1096485

    Article  CAS  PubMed  Google Scholar 

  49. Kim JA, Connors BW (2012) High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front Cell Neurosci 6:27. doi:10.3389/fncel.2012.00027

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim DY, Vallejo J, Rho JM (2010) Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem 114:130–141. doi:10.1111/j.1471-4159.2010.06728.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kimura R, Ma LY, Wu C, Turner D, Shen JX, Ellsworth K, Wakui M, Maalouf M, Wu J (2012) Acute exposure to the mitochondrial complex I toxin rotenone impairs synaptic long-term potentiation in rat hippocampal slices. CNS Neurosci Ther 18:641–646. doi:10.1111/j.1755-5949.2012.00337.x

    Article  CAS  PubMed  Google Scholar 

  52. Koehn J, Kollmar R, Cimpianu CL, Kallmunzer B, Moeller S, Schwab S, Hilz MJ (2012) Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure. Stroke 43:2142–2148. doi:10.1161/STROKEAHA.112.652248

    Article  PubMed  Google Scholar 

  53. Kowalska A, Gyugos M, Szego D, Pineda AL, Ayala D, Xu Y, Hughes N, Tito A, Jabłonska J (2007) The thermal scanning fluorescence study on the conformational stability of glucose oxidase (GOD) from Aspergillus niger. Food Chem Biotechnol 71:35–48

    CAS  Google Scholar 

  54. Kubota Y, Kamatani D, Tsukano H, Ohshima S, Takahashi K, Hishida R, Kudoh M, Takahashi S, Shibuki K (2008) Transcranial photo-inactivation of neural activities in the mouse auditory cortex. Neurosci Res 60:422–430. doi:10.1016/j.neures.2007.12.013

    Article  PubMed  Google Scholar 

  55. Lee JC, Callaway JC, Foehring RC (2005) Effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons. J Neurophysiol 93:2012–2020. doi:10.1152/jn.01017.2004

    Article  CAS  PubMed  Google Scholar 

  56. Li LZ, Xu HN, Ranji M, Nioka S, Chance B (2009) Mitochondrial redox imaging for cancer diagnostic and therapeutic studies. J Innov Opt Health Sci 2:325–341. doi:10.1142/S1793545809000735

    Article  PubMed  PubMed Central  Google Scholar 

  57. Llano DA, Theyel BB, Mallik AK, Sherman SM, Issa NP (2009) Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol 101:3325–3340. doi:10.1152/jn.91291.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Llano DA, Turner J, Caspary DM (2012) Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J Neurosci 32:16141–16148. doi:10.1523/JNEUROSCI.2499-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Llano DA, Slater BJ, Lesicko AM, Stebbings KA (2014) An auditory colliculothalamocortical brain slice preparation in mouse. J Neurophysiol 111:197–207. doi:10.1152/jn.00605.2013

    Article  CAS  PubMed  Google Scholar 

  60. Ma H, Cai Q, Lu W, Sheng ZH, Mochida S (2009) KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J Neurosci 29:13019–13029. doi:10.1523/JNEUROSCI.2517-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311. doi:10.1242/jeb.02208

    Article  CAS  PubMed  Google Scholar 

  62. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901. doi:10.1016/j.neuron.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  63. Malthankar-Phatak GH, Patel AB, Xia Y, Hong S, Chowdhury GM, Behar KL, Orina IA, Lai JC (2008) Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons. Brain Res 1229:147–154. doi:10.1016/j.brainres.2008.06.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mandeville ET, Ayata C, Zheng Y, Mandeville JB (2017) Translational MR neuroimaging of stroke and recovery. Transl Stroke Res 8:22–32. doi:10.1007/s12975-016-0497-z

    Article  CAS  PubMed  Google Scholar 

  65. Mayevsky A (1984) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res 319:49–68

    Article  CAS  PubMed  Google Scholar 

  66. Mayevsky A, Chance B (1974) Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res 65:529–533

    Article  CAS  PubMed  Google Scholar 

  67. Mayevsky A, Chance B (1982) Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217:537–540

    Article  CAS  PubMed  Google Scholar 

  68. Mayevsky A, Zarchin N, Friedli CM (1982) Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Res 236:93–105

    Article  CAS  PubMed  Google Scholar 

  69. Michiels C (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164:1875–1882. doi:10.1016/S0002-9440(10)63747-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A 108:7601–7606. doi:10.1073/pnas.1100223108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mori K, Maeda M, Miyazaki M, Iwase H (1998) Effects of mild (33 degrees C) and moderate (29 degrees C) hypothermia on cerebral blood flow and metabolism, lactate, and extracellular glutamate in experimental head injury. Neurol Res 20:719–726

    Article  CAS  PubMed  Google Scholar 

  72. Mrozek S, Vardon F, Geeraerts T (2012) Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012:989487. doi:10.1155/2012/989487

    PubMed  PubMed Central  Google Scholar 

  73. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, Investigators TTMT (2013) Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 369:2197–2206. doi:10.1056/NEJMoa1310519

    Article  CAS  PubMed  Google Scholar 

  74. Osborne NN, Tobin AB, Ghazi H (1988) Role of inositol trisphosphate as a second messenger in signal transduction processes: an essay. Neurochem Res 13:177–191

    Article  CAS  PubMed  Google Scholar 

  75. Palladino WG, Proctor HJ, Jobsis FF (1983) Effect of hypothermia during hypoxic hypotension on cerebral metabolism. J Surg Res 34:388–393

    Article  CAS  PubMed  Google Scholar 

  76. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN (2016) Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab 36:647–664. doi:10.1177/0271678X15617954

    Article  PubMed  Google Scholar 

  78. Quinn PJ (1988) Effects of temperature on cell membranes. Symp Soc Exp Biol 42:237–258

    CAS  PubMed  Google Scholar 

  79. Ranji M, Kanemoto S, Matsubara M, Grosso MA, Gorman JH 3rd, Gorman RC, Jaggard DL, Chance B (2006) Fluorescence spectroscopy and imaging of myocardial apoptosis. J Biomed Opt 11:064036. doi:10.1117/1.2400701

    Article  PubMed  CAS  Google Scholar 

  80. Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ (2004) Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92:199–211. doi:10.1152/jn.01275.2003

    Article  CAS  PubMed  Google Scholar 

  81. Reinert KC, Gao W, Chen G, Ebner TJ (2007) Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res 85:3221–3232. doi:10.1002/jnr.21348

    Article  CAS  PubMed  Google Scholar 

  82. Reinert KC, Gao W, Chen G, Wang X, Peng YP, Ebner TJ (2011) Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. Cerebellum 10:585–599. doi:10.1007/s12311-011-0278-x

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ricker JH, Hillary FG, DeLuca J (2001) Functionally activated brain imaging (O-15 PET and fMRI) in the study of learning and memory after traumatic brain injury. J Head Trauma Rehabil 16:191–205

    Article  CAS  PubMed  Google Scholar 

  84. Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):117

    Google Scholar 

  85. Sacktor B, Sanborn R (1956) The effect of temperature on oxidative phosphorylation with insect flight muscle mitochondria. J Biophys Biochem Cytol 2:105–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schneider J, Lewen A, Ta TT, Galow LV, Isola R, Papageorgiou IE, Kann O (2015) A reliable model for gamma oscillations in hippocampal tissue. J Neurosci Res 93:1067–1078. doi:10.1002/jnr.23590

    Article  CAS  PubMed  Google Scholar 

  87. Schuh RA, Matthews CC, Fishman PS (2008) Interaction of mitochondrial respiratory inhibitors and excitotoxins potentiates cell death in hippocampal slice cultures. J Neurosci Res 86:3306–3313. doi:10.1002/jnr.21772

    Article  CAS  PubMed  Google Scholar 

  88. Schurr A, Rigor BM (1998) Brain anaerobic lactate production: a suicide note or a survival kit? Dev Neurosci 20:348–357

    Article  CAS  PubMed  Google Scholar 

  89. Sepehr R, Staniszewski K, Maleki S, Jacobs ER, Audi S, Ranji M (2012) Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress. J Biomed Opt 17:046010. doi:10.1117/1.JBO.17.4.046010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, SA MD, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH, National Institute of Child H, Human Development Neonatal Research N (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353:1574–1584. doi:10.1056/NEJMcps050929

    Article  CAS  PubMed  Google Scholar 

  91. Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R (2003) Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence. J Physiol 549:919–927. doi:10.1113/jphysiol.2003.040709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shuttleworth CW (2010) Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation. Neurochem Int 56:379–386. doi:10.1016/j.neuint.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  93. Shuttleworth CW, Brennan AM, Connor JA (2003) NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci 23:3196–3208

    CAS  PubMed  Google Scholar 

  94. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Slater BJ, Fan AY, Stebbings KA, Saif MT, Llano DA (2015) Modification of a colliculo-thalamocortical mouse brain slice, incorporating 3-D printing of chamber components and multi-scale optical imaging. J Vis Exp doi:10.3791/53067

  96. Stebbings KA, Choi HW, Ravindra A, Caspary DM, Turner JG, Llano DA (2016) Ageing-related changes in GABAergic inhibition in mouse auditory cortex, measured using in vitro flavoprotein autofluorescence imaging. J Physiol 594:207–221. doi:10.1113/JP271221

    Article  CAS  PubMed  Google Scholar 

  97. Steriade M, Amzica F (1999) Intracellular study of excitability in the seizure-prone neocortex in vivo. J Neurophysiol 82:3108–3122

    CAS  PubMed  Google Scholar 

  98. Vanzetta I, Flynn C, Ivanov AI, Bernard C, Benar CG (2010) Investigation of linear coupling between single-event blood flow responses and interictal discharges in a model of experimental epilepsy. J Neurophysiol 103:3139–3152. doi:10.1152/jn.01048.2009

    Article  PubMed  Google Scholar 

  99. Varela C, Llano DA, Theyel BB (2012) An introduction to in vitro slice approaches for the study of neuronal circuitry. NeuroMethods 67:103–125. doi:10.1007/7657_2011_19

    Article  Google Scholar 

  100. Vazquez AL, Masamoto K, Fukuda M, Kim SG (2010) Cerebral oxygen delivery and consumption during evoked neural activity. Front Neuroenerg 2:11. doi:10.3389/fnene.2010.00011

    Google Scholar 

  101. Vazquez AL, Fukuda M, Kim SG (2012) Evolution of the dynamic changes in functional cerebral oxidative metabolism from tissue mitochondria to blood oxygen. J Cereb Blood Flow Metab 32:745–758. doi:10.1038/jcbfm.2011.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10:1308–1312. doi:10.1038/nn1977

    Article  CAS  PubMed  Google Scholar 

  103. Volgushev M, Vidyasagar TR, Chistiakova M, Yousef T, Eysel UT (2000) Membrane properties and spike generation in rat visual cortical cells during reversible cooling. J Physiol 522(Pt 1):59–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R (2014) Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 8:307. doi:10.3389/fnins.2014.00307

    PubMed  PubMed Central  Google Scholar 

  105. Xu G, Perez-Pinzon MA, Sick TJ (2003) Mitochondrial complex I inhibition produces selective damage to hippocampal subfield CA1 in organotypic slice cultures. Neurotox Res 5:529–538

    Article  PubMed  Google Scholar 

  106. Yager JY, Asselin J (1996) Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Stroke 27:919–925 discussion 926

    Article  CAS  PubMed  Google Scholar 

  107. Yaron-Jakoubovitch A, Koch C, Segev I, Yarom Y (2013) The unimodal distribution of sub-threshold, ongoing activity in cortical networks. Front Neural Circuits 7:116. doi:10.3389/fncir.2013.00116

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yenari M, Kitagawa K, Lyden P, Perez-Pinzon M (2008) Metabolic downregulation: a key to successful neuroprotection? Stroke 39:2910–2917. doi:10.1161/STROKEAHA.108.514471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yona G, Meitav N, Kahn I, Shoham S (2016) Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications(1,2,3). eNeuro 3. doi:10.1523/ENEURO.0059-15.2015

Download references

Acknowledgements

The Carle Neuroscience Institute supported the work. D.A.L. was supported by DC013073. The authors thank Dr. Eugene Kiyatkin (NIH), Dr. Robert Gennis (University of Illinois), Dr. Sanjiv Sinha (University of Illinois), Dr. Naoum Issa (University of Chicago), Dr. Jan Ramirez (Seattle Children’s Hospital), and Dr. Alfredo Garcia (Seattle Children’s Hospital) for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Llano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, B.A., Wang, H., Lesicko, A.M.H. et al. Effect of temperature on FAD and NADH-derived signals and neurometabolic coupling in the mouse auditory and motor cortex. Pflugers Arch - Eur J Physiol 469, 1631–1649 (2017). https://doi.org/10.1007/s00424-017-2037-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2037-4

Keywords

Navigation