Skip to main content

Advertisement

Log in

Macrophages in neuroinflammation: role of the renin-angiotensin-system

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Macrophages are essential players of the innate immune system which are involved in the initiation and progression of various inflammatory and autoimmune diseases including neuroinflammation. In the past few years, it has become increasingly clear that the regulation of macrophage responses by the local tissue milieu is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, the renin-angiotensin system (RAS) is a major focus of current research. Besides its classical role in blood pressure control, body fluid, and electrolyte homeostasis, the RAS may influence (auto)immune responses, modulate T cells, and particularly act on macrophages via different signaling pathways. Activation of classical RAS pathways including angiotensin (Ang) II and AngII type 1 (AT1R) receptors may drive pro-inflammatory macrophage responses in neuroinflammation via regulation of chemokines. More recently, alternative RAS pathways were described, such as binding of Ang-(1–7) to its receptor Mas. Signaling via Mas pathways may counteract some of the AngII/AT1R-mediated effects. In macrophages, the Ang-(1–7)/Mas exerts beneficial effects on neuroinflammation via modulating macrophage polarization, migration, and T cell activation in vitro and in vivo. These data delineate a pivotal role of the RAS in inflammation of the nervous system and identify RAS modulation as a potential new target for immunotherapy with a special focus on macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal S, Piesco NP, Johns LP, Riccelli AE (1995) Differential expression of IL-1 beta, TNF-alpha, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. J Dent Res 74:1057–1065

    Article  CAS  PubMed  Google Scholar 

  2. Ardaillou R (1997) Active fragments of angiotensin II: enzymatic pathways of synthesis and biological effects. Curr Opin Nephrol Hypertens 6:28–34

    Article  CAS  PubMed  Google Scholar 

  3. Arnold AC, Sakima A, Kasper SO, Vinsant S, Garcia-Espinosa MA, Diz DI (2012) The brain renin-angiotensin system and cardiovascular responses to stress: insights from transgenic rats with low brain angiotensinogen. J Appl Physiol Bethesda Md 1985 113:1929–1936. doi: 10.1152/japplphysiol.00569.2012

  4. Asashima T, Iizasa H, Terasaki T, Nakashima E (2003) Rat brain pericyte cell lines expressing β2-adrenergic receptor, angiotensin II receptor type 1A, klotho, and CXCR4 mRNAs despite having endothelial cell markers. J Cell Physiol 197:69–76. doi:10.1002/jcp.10343

    Article  CAS  PubMed  Google Scholar 

  5. Banwell B, Bar-Or A, Arnold DL, Sadovnick D, Narayanan S, McGowan M, O’Mahony J, Magalhaes S, Hanwell H, Vieth R, Tellier R, Vincent T, Disanto G, Ebers G, Wambera K, Connolly MB, Yager J, Mah JK, Booth F, Sebire G, Callen D, Meaney B, Dilenge M-E, Lortie A, Pohl D, Doja A, Venketaswaran S, Levin S, MacDonald EA, Meek D, Wood E, Lowry N, Buckley D, Yim C, Awuku M, Cooper P, Grand’Maison F, Baird JB, Bhan V, Marrie RA (2011) Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol 10:436–445. doi:10.1016/S1474-4422(11)70045-X

    Article  CAS  PubMed  Google Scholar 

  6. Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912. doi:10.1038/nri2190

    Article  CAS  PubMed  Google Scholar 

  7. Bennion DM, Haltigan E, Regenhardt RW, Steckelings UM, Sumners C (2015) Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr Hypertens Rep 17:3. doi:10.1007/s11906-014-0512-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Benter IF, Yousif MHM, Dhaunsi GS, Kaur J, Chappell MC, Diz DI (2008) Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol 28:25–33. doi:10.1159/000108758

    Article  CAS  PubMed  Google Scholar 

  9. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365

    CAS  PubMed  Google Scholar 

  10. Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86:211–218. doi:10.1093/cvr/cvq076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brosnihan KB, Li P, Ferrario CM (1996) Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27:523–528

    Article  CAS  PubMed  Google Scholar 

  12. Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists. Lancet Lond Engl 355:637–645

    Article  CAS  Google Scholar 

  13. Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM (1989) Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys 257:H324–H329

    CAS  Google Scholar 

  14. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J Off Publ Fed Am Soc Exp Biol 14:6–16

    CAS  Google Scholar 

  15. Carvalheira JBC, Torsoni MA, Ueno M, Amaral ME, Araújo EP, Velloso LA, Gontijo JAR, Saad MJA (2005) Cross-talk between the insulin and leptin signaling systems in rat hypothalamus. Obes Res 13:48–57. doi:10.1038/oby.2005.7

    Article  CAS  PubMed  Google Scholar 

  16. Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. ScientificWorldJournal 11:2391–2402. doi:10.1100/2011/213962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. CH de C, RAS dos S, Ferreira AJ, Bader M, Alenina N, de Almeida AP (2005) Evidence for a functional interaction of the angiotensin-(1-7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension 46:937–942. doi:10.1161/01.HYP.0000175813.04375.8a

    Article  Google Scholar 

  18. Chappell MC, Brosnihan KB, Diz DI, Ferrario CM (1989) Identification of angiotensin-(1-7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem 264:16518–16523

    CAS  PubMed  Google Scholar 

  19. Chen M-F, Li Y-J, Yang T-L, Lou B, Xie X-M (2009) Losartan inhibits monocytic adhesion induced by ADMA via downregulation of chemokine receptors in monocytes. Eur J Clin Pharmacol 65:457–464. doi:10.1007/s00228-008-0607-2

    Article  CAS  PubMed  Google Scholar 

  20. Comalada M, Xaus J, Sánchez E, Valledor AF, Celada A (2004) Macrophage colony-stimulating factor-, granulocyte-macrophage colony-stimulating factor-, or IL-3-dependent survival of macrophages, but not proliferation, requires the expression of p21(Waf1) through the phosphatidylinositol 3-kinase/Akt pathway. Eur J Immunol 34:2257–2267. doi:10.1002/eji.200425110

    Article  CAS  PubMed  Google Scholar 

  21. Combadière C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657. doi:10.1161/CIRCULATIONAHA.107.745091

    Article  PubMed  CAS  Google Scholar 

  22. Compston A, Coles A (2008) Multiple sclerosis. Lancet Lond Engl 372:1502–1517. doi:10.1016/S0140-6736(08)61620-7

    Article  CAS  Google Scholar 

  23. Constantinescu CS, Goodman DB, Grossman RI, Mannon LJ, Cohen JA (1997) Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol 54:1012–1015

    Article  CAS  PubMed  Google Scholar 

  24. Constantinescu CS, Ventura E, Hilliard B, Rostami A (1995) Effects of the angiotensin converting enzyme inhibitor captopril on experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 17:471–491. doi:10.3109/08923979509016382

    Article  CAS  PubMed  Google Scholar 

  25. Correale J, Farez MF (2015) Smoking worsens multiple sclerosis prognosis: two different pathways are involved. J Neuroimmunol 281:23–34. doi:10.1016/j.jneuroim.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  26. Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021. doi:10.1038/nature04223

    Article  CAS  PubMed  Google Scholar 

  27. Crowley SD (2014) The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid Redox Signal 20:102–120. doi:10.1089/ars.2013.5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim H-S, Tharaux P-L, Coffman TM (2008) Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol 295:F515–F524. doi:10.1152/ajprenal.00527.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Croxford AL, Kurschus FC, Waisman A (2011) Mouse models for multiple sclerosis: historical facts and future implications. Biochim Biophys Acta 1812:177–183. doi:10.1016/j.bbadis.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  30. Dai Q, Xu M, Yao M, Sun B (2007) Angiotensin AT1 receptor antagonists exert anti-inflammatory effects in spontaneously hypertensive rats. Br J Pharmacol 152:1042–1048. doi:10.1038/sj.bjp.0707454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 25:2106–2113. doi:10.1161/01.ATV.0000181743.28028.57

    Article  CAS  PubMed  Google Scholar 

  32. De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    CAS  PubMed  Google Scholar 

  33. De Kloet AD, Pioquinto DJ, Nguyen D, Wang L, Smith JA, Hiller H, Sumners C (2014) Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei. Physiol Behav 136:31–38. doi:10.1016/j.physbeh.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  34. Doerner M, Beckmann K, Knappertz V, Kappos L, Hartung HP, Filippi M, O’Connor PW, Arnason B, Cook S, Jeffery D, Comi G, Limmroth V (2014) Effects of inhibitors of the renin-angiotensin system on the efficacy of interferon beta-1b: a post hoc analysis of the BEYOND study. Eur Neurol 71:173–179. doi:10.1159/000355530

    Article  CAS  PubMed  Google Scholar 

  35. Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ, Stegbauer J, Gurley SB, van Oyen D, Antlanger M, Bader M, Motta-Santos D, Santos RA, Elased KM, Säemann MD, Linker RA, Poglitsch M (2016) Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep 6:33678. doi:10.1038/srep33678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9

    Article  CAS  PubMed  Google Scholar 

  37. Doyle AG, Herbein G, Montaner LJ, Minty AJ, Caput D, Ferrara P, Gordon S (1994) Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 24:1441–1445. doi:10.1002/eji.1830240630

    Article  CAS  PubMed  Google Scholar 

  38. Dragun D, Müller DN, Bräsen JH, Fritsche L, Nieminen-Kelhä M, Dechend R, Kintscher U, Rudolph B, Hoebeke J, Eckert D, Mazak I, Plehm R, Schönemann C, Unger T, Budde K, Neumayer H-H, Luft FC, Wallukat G (2005) Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 352:558–569. doi:10.1056/NEJMoa035717

    Article  CAS  PubMed  Google Scholar 

  39. El-Hashim AZ, Renno WM, Raghupathy R, Abduo HT, Akhtar S, Benter IF (2012) Angiotensin-(1-7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br J Pharmacol 166:1964–1976. doi:10.1111/j.1476-5381.2012.01905.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508–2521

    CAS  PubMed  Google Scholar 

  41. Ena P, Madeddu P, Glorioso N, Cerimele D, Rappelli A (1985) High prevalence of cardiovascular diseases and enhanced activity of the renin-angiotensin system in psoriatic patients. Acta Cardiol 40:199–205

    CAS  PubMed  Google Scholar 

  42. Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the rain of the rat. J Physiol 210:457–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Esteban V, Lorenzo O, Rupérez M, Suzuki Y, Mezzano S, Blanco J, Kretzler M, Sugaya T, Egido J, Ruiz-Ortega M (2004) Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol JASN 15:1514–1529

    Article  CAS  PubMed  Google Scholar 

  44. Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C (2016) Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 126:4674–4689. doi:10.1172/JCI86950

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferrario CM, Chappell MC, Dean RH, Iyer SN (1998) Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis. J Am Soc Nephrol JASN 9:1716–1722

    CAS  PubMed  Google Scholar 

  46. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI (1997) Counterregulatory actions of angiotensin-(1-7). Hypertension 30:535–541

    Article  CAS  PubMed  Google Scholar 

  47. Ferreira AJ, R aS S (2005) Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res Rev Bras Pesqui Médicas E Biológicas Soc Bras Biofísica Al 38:499–507 /S0100-879X2005000400003

    CAS  Google Scholar 

  48. Fitzsimons JT (1971) The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon. J Physiol 214:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fleegal-DeMotta MA, Doghu S, Banks WA (2009) Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab 29:640–647. doi:10.1038/jcbfm.2008.158

    Article  CAS  PubMed  Google Scholar 

  50. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162:1–11. doi:10.1111/j.1365-2249.2010.04143.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fontes MA, Silva LC, Campagnole-Santos MJ, Khosla MC, Guertzenstein PG, Santos RA (1994) Evidence that angiotensin-(1-7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res 665:175–180

    Article  CAS  PubMed  Google Scholar 

  52. Gallagher PE, Ferrario CM, Tallant EA (2008) MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol 295:C1169–C1174. doi:10.1152/ajpcell.00145.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gallagher PE, Tallant EA (2004) Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis 25:2045–2052. doi:10.1093/carcin/bgh236

    Article  CAS  PubMed  Google Scholar 

  54. Gallinat S, Yu M, Dorst A, Unger T, Herdegen T (1998) Sciatic nerve transection evokes lasting up-regulation of angiotensin AT2 and AT1 receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res 57:111–122

    Article  CAS  PubMed  Google Scholar 

  55. Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL (2013) Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct 218:373–388. doi:10.1007/s00429-012-0402-9

    Article  CAS  PubMed  Google Scholar 

  56. Gava E, Samad-Zadeh A, Zimpelmann J, Bahramifarid N, Kitten GT, Santos RA, Touyz RM, Burns KD (2009) Angiotensin-(1-7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 24:1766–1773. doi:10.1093/ndt/gfn736

    CAS  Google Scholar 

  57. Gifford GE, Lohmann-Matthes ML (1987) Gamma interferon priming of mouse and human macrophages for induction of tumor necrosis factor production by bacterial lipopolysaccharide. J Natl Cancer Inst 78:121–124

    Article  CAS  PubMed  Google Scholar 

  58. Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654. doi:10.1056/NEJM199606203342507

    Article  CAS  PubMed  Google Scholar 

  59. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE (1991) Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933. doi:10.1172/JCI115395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148. doi:10.1161/01.RES.74.6.1141

    Article  CAS  PubMed  Google Scholar 

  61. Grobe JL, Xu D, Sigmund CD (2008) An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology 23:187–193. doi:10.1152/physiol.00002.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL, Rockman HA, Coffman TM (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116:2218–2225. doi:10.1172/JCI16980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guthridge MA, Lopez AF (2007) Phosphotyrosine/phosphoserine binary switches: a new paradigm for the regulation of PI3K signalling and growth factor pleiotropy? Biochem Soc Trans 35:250–252. doi:10.1042/BST0350250

    Article  CAS  PubMed  Google Scholar 

  64. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449–2460. doi:10.1084/jem.20070657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haghikia A, Hohlfeld R, Gold R, Fugger L (2013) Therapies for multiple sclerosis: translational achievements and outstanding needs. Trends Mol Med 19:309–319. doi:10.1016/j.molmed.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  66. Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee D-H, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thöne J, Demir S, Müller DN, Gold R, Linker RA (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43:817–829. doi:10.1016/j.immuni.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  67. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D-H, Grave K, Jörg S, Alenina N, Grosch J, Winkler J, Gold R, Bader M, Manzel A, Rump LC, Müller DN, Linker RA, Stegbauer J (2016) Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci . doi:10.1073/pnas.1612668113201612668

    Google Scholar 

  68. Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, Pei H, Geissmann F, Ley K, Hedrick CC (2012) NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 110:416–427. doi:10.1161/CIRCRESAHA.111.253377

    Article  CAS  PubMed  Google Scholar 

  69. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57:132–140. doi:10.1161/HYPERTENSIONAHA.110.163576

    Article  CAS  PubMed  Google Scholar 

  70. Herder V, Iskandar CD, Kegler K, Hansmann F, Elmarabet SA, Khan MA, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R, Beineke A (2015) Dynamic changes of microglia/macrophage M1 and M2 polarization in Theiler’s murine encephalomyelitis. Brain Pathol Zurich Switz 25:712–723. doi:10.1111/bpa.12238

    Article  CAS  Google Scholar 

  71. Hernández-Presa M, Bustos C, Ortego M, Tuñon J, Renedo G, Ruiz-Ortega M, Egido J (1997) Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95:1532–1541

    Article  PubMed  Google Scholar 

  72. Herx LM, Rivest S, Yong VW (2000) Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1β is required for the production of ciliary neurotrophic factor. J Immunol 165:2232–2239. doi:10.4049/jimmunol.165.4.2232

    Article  CAS  PubMed  Google Scholar 

  73. Hladikova M, Vašků A, Stourač P, Benešová Y, Bednařík J (2011) Two frequent polymorphisms of angiotensinogen and their association with multiple sclerosis progression rate. J Neurol Sci 303:31–34. doi:10.1016/j.jns.2011.01.020

    Article  CAS  PubMed  Google Scholar 

  74. Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA, Gratze P, Weyand C, Harrison DG (2009) Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol 296:R208–R216. doi:10.1152/ajpregu.90521.2008

    Article  CAS  PubMed  Google Scholar 

  75. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2015) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. doi:10.1016/S1474-4422(15)00334-8

    Google Scholar 

  76. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 15:317–331. doi:10.1016/S1474-4422(15)00313-0

    Article  CAS  PubMed  Google Scholar 

  77. Holmøy T, Hestvik ALK (2008) Multiple sclerosis: immunopathogenesis and controversies in defining the cause. Curr Opin Infect Dis 21:271–278. doi:10.1097/QCO.0b013e3282f88b48

    Article  PubMed  Google Scholar 

  78. Huang XC, Deng T, Sumners C (1998) Angiotensin II stimulates activation of Fos-regulating kinase and c-Jun NH2-terminal kinase in neuronal cultures from rat brain. Endocrinology 139:245–251. doi:10.1210/endo.139.1.5686

    CAS  PubMed  Google Scholar 

  79. Ishibashi M, Hiasa K, Zhao Q, Inoue S, Ohtani K, Kitamoto S, Tsuchihashi M, Sugaya T, Charo IF, Kura S, Tsuzuki T, Ishibashi T, Takeshita A, Egashira K (2004) Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res 94:1203–1210. doi:10.1161/01.RES.0000126924.23467.A3

    Article  CAS  PubMed  Google Scholar 

  80. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514. doi:10.3389/fimmu.2014.00514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Jack C, Ruffini F, Bar-Or A, Antel JP (2005) Microglia and multiple sclerosis. J Neurosci Res 81:363–373. doi:10.1002/jnr.20482

    Article  CAS  PubMed  Google Scholar 

  82. Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, Suski M, Pyka-Fosciak G, Nowak B, Guzik TJ, Marcinkiewicz J, Olszanecki R, Korbut R (2012) Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol Off J Pol Physiol Soc 63:77–85

    CAS  Google Scholar 

  83. Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C (2014) Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol 11:413–426. doi:10.1038/nrcardio.2014.59

    Article  CAS  PubMed  Google Scholar 

  84. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669. doi:10.1111/j.1471-4159.2009.05999.x

    Article  CAS  PubMed  Google Scholar 

  85. Kalra J, Prakash A, Kumar P, Majeed ABA (2015) Cerebroprotective effects of RAS inhibitors: beyond their cardio-renal actions. J Renin-Angiotensin-Aldosterone Syst JRAAS 16:459–468. doi:10.1177/1470320315583582

    Article  CAS  PubMed  Google Scholar 

  86. Kato H, Ishida J, Nagano K, Honjo K, Sugaya T, Takeda N, Sugiyama F, Yagami K-I, Fujita T, Nangaku M, Fukamizu A (2008) Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Lab Investig J Tech Methods Pathol 88:731–739. doi:10.1038/labinvest.2008.42

    Article  CAS  Google Scholar 

  87. Kawajiri M, Mogi M, Higaki N, Matsuoka T, Ohyagi Y, Tsukuda K, Kohara K, Horiuchi M, Miki T, Kira JI (2009) Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 15:262–265. doi:10.1177/1352458508097923

    Article  CAS  Google Scholar 

  88. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    CAS  PubMed  Google Scholar 

  89. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–522. doi:10.1038/nature11868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Konishi H, Kuroda S, Inada Y, Fujisawa Y (1994) Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys Res Commun 199:467–474. doi:10.1006/bbrc.1994.1252

    Article  CAS  PubMed  Google Scholar 

  91. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, Gembardt F, Kellett E, Martini L, Vanderheyden P, Schultheiss H-P, Walther T (2005) G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 111:1806–1813. doi:10.1161/01.CIR.0000160867.23556.7D

    Article  CAS  PubMed  Google Scholar 

  92. Kranzhöfer R, Browatzki M, Schmidt J, Kübler W (1999) Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem Biophys Res Commun 257:826–828. doi:10.1006/bbrc.1999.0543

    Article  PubMed  Google Scholar 

  93. Kvakan H, Kleinewietfeld M, Qadri F, Park J-K, Fischer R, Schwarz I, Rahn H-P, Plehm R, Wellner M, Elitok S, Gratze P, Dechend R, Luft FC, Muller DN (2009) Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119:2904–2912. doi:10.1161/CIRCULATIONAHA.108.832782

    Article  CAS  PubMed  Google Scholar 

  94. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L (2010) Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Invest 120:2782–2794. doi:10.1172/JCI41709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121. doi:10.1016/S1471-4914(00)01909-2

    Article  CAS  PubMed  Google Scholar 

  96. Lemos VS, Silva DMR, Walther T, Alenina N, Bader M, Santos RAS (2005) The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol 46:274–279

    Article  CAS  PubMed  Google Scholar 

  97. Liu M, Shi P, Sumners C (2016) Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J Neurochem 136:163–171. doi:10.1111/jnc.13386

    Article  CAS  PubMed  Google Scholar 

  98. Liu Y-C, Zou X-B, Chai Y-F, Yao Y-M (2014) Macrophage polarization in inflammatory diseases. Int J Biol Sci 10:520–529. doi:10.7150/ijbs.8879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, Gordon FJ, Harrison DG (2010) Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55:277–283. doi:10.1161/HYPERTENSIONAHA.109.142646

    Article  CAS  PubMed  Google Scholar 

  100. P’ng L, MG N, Parkinson J, Guiliano D, Blaxter M, Allen JE (2002) IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 3:7

    Article  Google Scholar 

  101. Loot AE, Roks AJM, Henning RH, Tio RA, Suurmeijer AJH, Boomsma F, van Gilst WH (2002) Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550

    Article  CAS  PubMed  Google Scholar 

  102. Lu J, Zhang Y, Shi J (2008) Effects of intracerebroventricular infusion of angiotensin-(1-7) on bradykinin formation and the kinin receptor expression after focal cerebral ischemia-reperfusion in rats. Brain Res 1219:127–135. doi:10.1016/j.brainres.2008.04.057

    Article  CAS  PubMed  Google Scholar 

  103. Manzel A, Domenig O, Ambrosius B, Kovacs A, Stegbauer J, Poglitsch M, Mueller DN, Gold R, Linker RA (2014) Angiotensin IV is induced in experimental autoimmune encephalomyelitis but fails to influence the disease. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 9:533–543. doi:10.1007/s11481-014-9548-y

    Article  Google Scholar 

  104. Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374. doi:10.1016/j.tips.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  105. Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, Gordon FJ, Harrison DG (2010) Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res 107:263–270. doi:10.1161/CIRCRESAHA.110.217299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Metzger R, Bader M, Ludwig T, Berberich C, Bunnemann B, Ganten D (1995) Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett 357:27–32

    Article  CAS  PubMed  Google Scholar 

  107. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol Baltim Md 1950 164:6166–6173.

  108. Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME (2013) Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med 65:1060–1068. doi:10.1016/j.freeradbiomed.2013.08.183

    Article  CAS  PubMed  Google Scholar 

  109. Muller DN, Shagdarsuren E, Park J-K, Dechend R, Mervaala E, Hampich F, Fiebeler A, Ju X, Finckenberg P, Theuer J, Viedt C, Kreuzer J, Heidecke H, Haller H, Zenke M, Luft FC (2002) Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol 161:1679–1693. doi:10.1016/S0002-9440(10)64445-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Muñoz A, Garrido-Gil P, Dominguez-Meijide A, Labandeira-Garcia JL (2014) Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of vascular endothelial growth factor and interleukin-1β. Exp Neurol 261:720–732. doi:10.1016/j.expneurol.2014.08.019

    Article  PubMed  CAS  Google Scholar 

  111. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nishida M, Fujinaka H, Matsusaka T, Price J, Kon V, Fogo AB, Davidson JM, Linton MF, Fazio S, Homma T, Yoshida H, Ichikawa I (2002) Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest 110:1859–1868. doi:10.1172/JCI15045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM (2007) The angiotensin II AT1 receptor structure-activity correlations in the light of rhodopsin structure. Physiol Rev 87:565–592. doi:10.1152/physrev.00040.2005

    Article  CAS  PubMed  Google Scholar 

  114. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K (2014) The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014:689360. doi:10.1155/2014/689360

    Article  CAS  Google Scholar 

  115. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638. doi:10.1016/j.tcb.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  116. Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A 106:14948–14953. doi:10.1073/pnas.0903958106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Döpp EA, Renardel de Lavalette C, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol Baltim Md 1950 167:4644–4650.

  118. Potthoff SA, Fähling M, Clasen T, Mende S, Ishak B, Suvorava T, Stamer S, Thieme M, Sivritas SH, Kojda G, Patzak A, Rump LC, Stegbauer J (2014) Angiotensin-(1-7) modulates renal vascular resistance through inhibition of p38 mitogen-activated protein kinase in apolipoprotein E-deficient mice. Hypertension 63:265–272. doi:10.1161/HYPERTENSIONAHA.113.02289

    Article  CAS  PubMed  Google Scholar 

  119. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. doi:10.1038/nrn3722

    Article  CAS  PubMed  Google Scholar 

  120. Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol (Berl) 128:319–331. doi:10.1007/s00401-014-1267-1

    Article  Google Scholar 

  121. Qian C, Schoemaker RG, van Gilst WH, Roks AJM (2009) The role of the renin-angiotensin-aldosterone system in cardiovascular progenitor cell function. Clin Sci Lond Engl 1979 116:301–314. doi: 10.1042/CS20080157

  122. Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL (2008) Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 31:58–73. doi:10.1016/j.nbd.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  123. Sagawa K, Nagatani K, Komagata Y, Yamamoto K (2005) Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum 52:1920–1928. doi:10.1002/art.21040

    Article  CAS  PubMed  Google Scholar 

  124. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49:185–192. doi:10.1161/01.HYP.0000251865.35728.2f

    Article  CAS  PubMed  Google Scholar 

  125. Santos RA (2014) Angiotensin-(1-7). Hypertension 63:1138–1147. doi:10.1161/HYPERTENSIONAHA.113.01274

    Article  CAS  PubMed  Google Scholar 

  126. Santos RAS, AC S e S, Maric C, DMR S, Machado RP, de Buhr I, Heringer-Walther S, SVB P, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss H-P, Speth R, Walther T (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 100:8258–8263. doi:10.1073/pnas.1432869100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seyedabadi M, Goodchild AK, Pilowsky PM (2001) Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertens Dallas Tex 1979 38:1087–1092.

  128. Silva-Barcellos NM, Frézard F, Caligiorne S, Santos RA (2001) Long-lasting cardiovascular effects of liposome-entrapped angiotensin-(1-7) at the rostral ventrolateral medulla. Hypertens Dallas Tex 1979 38:1266–1271.

  129. Solak Y, Afsar B, Vaziri ND, Aslan G, Yalcin CE, Covic A, Kanbay M (2016) Hypertension as an autoimmune and inflammatory disease. Hypertens Res Off J Jpn Soc Hypertens 39:567–573. doi:10.1038/hr.2016.35

    Article  CAS  Google Scholar 

  130. Sonsalla PK, Coleman C, Wong L-Y, Harris SL, Richardson JR, Gadad BS, Li W, German DC (2013) The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp Neurol 250:376–383. doi:10.1016/j.expneurol.2013.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Souza LL, Costa-Neto CM (2012) Angiotensin-(1-7) decreases LPS-induced inflammatory response in macrophages. J Cell Physiol 227:2117–2122. doi:10.1002/jcp.22940

    Article  CAS  PubMed  Google Scholar 

  132. Stegbauer J, Lee D-H, Seubert S, Ellrichmann G, Manzel A, Kvakan H, Muller DN, Gaupp S, Rump LC, Gold R, Linker RA (2009) Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci U S A 106:14942–14947. doi:10.1073/pnas.0903602106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stegbauer J, Potthoff SA, Quack I, Mergia E, Clasen T, Friedrich S, Vonend O, Woznowski M, Königshausen E, Sellin L, Rump LC (2011) Chronic treatment with angiotensin-(1-7) improves renal endothelial dysfunction in apolipoproteinE-deficient mice. Br J Pharmacol 163:974–983. doi:10.1111/j.1476-5381.2011.01295.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stegbauer J, Vonend O, Oberhauser V, Rump LC (2003) Effects of angiotensin-(1-7) and other bioactive components of the renin-angiotensin system on vascular resistance and noradrenaline release in rat kidney. J Hypertens 21:1391–1399. doi:10.1097/01.hjh.0000059074.43904.80

    Article  CAS  PubMed  Google Scholar 

  135. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    Article  CAS  PubMed  Google Scholar 

  136. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21. doi:10.1002/ana.20913

    Article  CAS  PubMed  Google Scholar 

  137. Stöger JL, Gijbels MJJ, van der Velden S, Manca M, van der Loos CM, Biessen EAL, Daemen MJAP, Lutgens E, de Winther MPJ (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468. doi:10.1016/j.atherosclerosis.2012.09.013

    Article  PubMed  CAS  Google Scholar 

  138. Strawn WB, Ferrario CM, Tallant EA (1999) Angiotensin-(1-7) reduces smooth muscle growth after vascular injury. Hypertension 33:207–211

    Article  CAS  PubMed  Google Scholar 

  139. Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810–1819. doi:10.1038/nprot.2006.285

    Article  CAS  PubMed  Google Scholar 

  140. Stromnes IM, Goverman JM (2006) Passive induction of experimental allergic encephalomyelitis. Nat Protoc 1:1952–1960. doi:10.1038/nprot.2006.284

    Article  CAS  PubMed  Google Scholar 

  141. Sun C, Sellers KW, Sumners C, Raizada MK (2005) NAD(P)H oxidase inhibition attenuates neuronal chronotropic actions of angiotensin II. Circ Res 96:659–666. doi:10.1161/01.RES.0000161257.02571.4b

    Article  CAS  PubMed  Google Scholar 

  142. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. doi:10.1172/JCI28549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tallant EA, Ferrario CM, Gallagher PE (2005) Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 289:H1560–H1566. doi:10.1152/ajpheart.00941.2004

    Article  CAS  PubMed  Google Scholar 

  144. Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, Lei B (2016) Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-κB pathways in human retinal pigment epithelium. J Neuroinflammation 13:35. doi:10.1186/s12974-016-0489-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Thatcher SE, Zhang X, Howatt DA, Lu H, Gurley SB, Daugherty A, Cassis LA (2011) Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor−/− mice. Arterioscler Thromb Vasc Biol 31:758–765. doi:10.1161/ATVBAHA.110.221614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Timmermans PB, Wong PC, Chiu AT, Herblin WF (1991) Nonpeptide angiotensin II receptor antagonists. Trends Pharmacol Sci 12:55–62

    Article  CAS  PubMed  Google Scholar 

  147. Timmermans S, Bogie JFJ, Vanmierlo T, Lütjohann D, Stinissen P, Hellings N, Hendriks JJA (2014) High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the renin angiotensin system. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 9:209–217. doi:10.1007/s11481-013-9502-4

    Article  Google Scholar 

  148. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243. doi:10.1074/jbc.M002615200

    Article  CAS  PubMed  Google Scholar 

  149. Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S (2016) Telmisartan modulates glial activation: in vitro and in vivo studies. PLoS One 11:e0155823. doi:10.1371/journal.pone.0155823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Torika N, Asraf K, Roasso E, Danon A, Fleisher-Berkovich S (2016) Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer’s disease. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 11:774–785. doi:10.1007/s11481-016-9703-8

    Article  Google Scholar 

  151. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol Baltim Md 1950 161:3767–3775.

  152. Tsutsumi K, Saavedra JM (1991) Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Phys 261:R209–R216

    CAS  Google Scholar 

  153. Ueda A, Ishigatsubo Y, Okubo T, Yoshimura T (1997) Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem 272:31092–31099

    Article  CAS  PubMed  Google Scholar 

  154. Valenzuela R, Barroso-Chinea P, Villar-Cheda B, Joglar B, Muñoz A, Lanciego JL, Labandeira-Garcia JL (2010) Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J Neuropathol Exp Neurol 69:1130–1142. doi:10.1097/NEN.0b013e3181fa0308

    Article  CAS  PubMed  Google Scholar 

  155. Valero-Esquitino V, Lucht K, Namsolleck P, Monnet-Tschudi F, Stubbe T, Lucht F, Liu M, Ebner F, Brandt C, Danyel LA, Villela DC, Paulis L, Thoene-Reineke C, Dahlöf B, Hallberg A, Unger T, Sumners C, Steckelings UM (2015) Direct angiotensin type 2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clin Sci Lond Engl 1979 128:95–109. doi: 10.1042/CS20130601

  156. Valledor AF, Comalada M, Xaus J, Celada A (2000) The differential time-course of extracellular-regulated kinase activity correlates with the macrophage response toward proliferation or activation. J Biol Chem 275:7403–7409

    Article  CAS  PubMed  Google Scholar 

  157. Verano-Braga T, Schwämmle V, Sylvester M, Passos-Silva DG, Peluso AAB, Etelvino GM, Santos RAS, Roepstorff P (2012) Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11:3370–3381. doi:10.1021/pr3001755

    Article  CAS  PubMed  Google Scholar 

  158. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, Karbach SH, Schwenk M, Yogev N, Schulz E, Oelze M, Grabbe S, Jonuleit H, Becker C, Daiber A, Waisman A, Münzel T (2011) Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124:1370–1381. doi:10.1161/CIRCULATIONAHA.111.034470

    Article  CAS  PubMed  Google Scholar 

  159. Wolf G, Schneider A, Helmchen U, Stahl R aK (1998) AT1-receptor antagonists abolish glomerular MCP-1 expression in a model of mesangial proliferative glomerulonephritis. Nephron Exp Nephrol 6:112–120. doi:10.1159/000020513

    Article  CAS  Google Scholar 

  160. Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, Bouthillier A, Reudelhuber TL, Prat A (2007) Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurosci 27:9032–9042. doi:10.1523/JNEUROSCI.2088-07.2007

    Article  CAS  PubMed  Google Scholar 

  161. Wynn TA, Chawla A, Pollard JW (2013) Origins and hallmarks of macrophages: development, homeostasis, and disease. Nature 496:445–455. doi:10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xu P, Costa-Goncalves AC, Todiras M, Rabelo LA, Sampaio WO, Moura MM, Santos SS, Luft FC, Bader M, Gross V, Alenina N, Santos RAS (2008) Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension 51:574–580. doi:10.1161/HYPERTENSIONAHA.107.102764

    Article  CAS  PubMed  Google Scholar 

  163. Yamamoto K, Chappell MC, Brosnihan KB, Ferrario CM (1992) In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertension 19:692–696

    Article  CAS  PubMed  Google Scholar 

  164. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee J-C, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. doi:10.1084/jem.20132477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang H, Raizada MK (1999) Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. J Neurosci 19:2413–2423

    CAS  PubMed  Google Scholar 

  166. Zhang J, Patel MB, Griffiths R, Dolber PC, Ruiz P, Sparks MA, Stegbauer J, Jin H, Gomez JA, Buckley AF, Lefler WS, Chen D, Crowley SD (2014) Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J Clin Invest 124:2198–2203. doi:10.1172/JCI61368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang Y, Lu J, Shi J, Lin X, Dong J, Zhang S, Liu Y, Tong Q (2008) Central administration of angiotensin-(1-7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides 42:593–600. doi:10.1016/j.npep.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  168. Zhao J, Liu E, Li G, Qi L, Li J, Yang W (2015) Effects of the angiotensin-(1-7)/Mas/PI3K/Akt/nitric oxide axis and the possible role of atrial natriuretic peptide in an acute atrial tachycardia canine model. J Renin-Angiotensin-Aldosterone Syst JRAAS 16:1069–1077. doi:10.1177/1470320314543723

    Article  CAS  PubMed  Google Scholar 

  169. Zhong J-C, Yu X-Y, Lin Q-X, Li X-H, Huang X-Z, Xiao D-Z, Lin S-G (2008) Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol 153:66–74. doi:10.1038/sj.bjp.0707482

    Article  CAS  PubMed  Google Scholar 

  170. Zhu YZ, Chimon GN, Zhu YC, Lu Q, Li B, Hu HZ, Yap EH, Lee HS, Wong PT (2000) Expression of angiotensin II AT2 receptor in the acute phase of stroke in rats. Neuroreport 11:1191–1194

    Article  CAS  PubMed  Google Scholar 

  171. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95:210–216. doi:10.1161/01.RES.0000135483.12297.e4

    Article  CAS  PubMed  Google Scholar 

  172. Zimpelmann J, Burns KD (2009) Angiotensin-(1–7) activates growth-stimulatory pathways in human mesangial cells. Am J Physiol - Ren Physiol 296:F337–F346. doi:10.1152/ajprenal.90437.2008

    Article  CAS  Google Scholar 

  173. Živković M, Kolaković A, Stojković L, Dinčić E, Kostić S, Alavantić D, Stanković A (2016) Renin-angiotensin system gene polymorphisms as risk factors for multiple sclerosis. J Neurol Sci 363:29–32. doi:10.1016/j.jns.2016.02.026

    Article  PubMed  CAS  Google Scholar 

  174. Zubcevic J, Waki H, Raizada MK, Paton JFR (2011) Autonomic-immune-vascular interaction. Hypertension 57:1026–1033. doi:10.1161/HYPERTENSIONAHA.111.169748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf A. Linker.

Ethics declarations

Conflict of interest

R.A.L. holds an endowed professorship supported by Novartis Pharma. J.S. is supported by the Deutsche Forschungsgemeinschaft (IRTG1902).

Additional information

This article is part of the special issue on macrophages in tissue homeostasis in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, A., Stegbauer, J. & Linker, R.A. Macrophages in neuroinflammation: role of the renin-angiotensin-system. Pflugers Arch - Eur J Physiol 469, 431–444 (2017). https://doi.org/10.1007/s00424-017-1942-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1942-x

Keywords

Navigation