Skip to main content
Log in

Losartan inhibits monocytic adhesion induced by ADMA via downregulation of chemokine receptors in monocytes

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, can induce the adhesiveness of monocytes to vascular endothelium, and chemokines play an important role in this process. The present study was carried out to test whether the inhibitory effect of losartan on ADMA-induced monocytic adhesion is mediated by chemokine receptors.

Methods

Human monocytoid cells (THP-1) were incubated with exogenous ADMA (30 μM) for 4 or 24 h in the absence or presence of losartan. The monocytic adhesion, the levels of chemokines, and the expression of chemokine receptors were determined. The possible signal pathway was also explored.

Results

In cultured monocytes, ADMA (30 μM) markedly increased monocytic adhesion to endothelial cells, elevated the levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and upregulated the mRNA expression of chemokine receptors CCR2 and CXCR2. Exposure to ADMA (30 μM) significantly induced the generation of intracellular reactive oxygen species (ROS) and activation of nuclear factor (NF)-κB. Pretreatment with AT1 receptor blocker (ARB) losartan (1, 3, 10 μM) attenuated monocytic adhesiveness elicited by ADMA and downregulated the expression of CCR2 and CXCR2 mRNA, accompanied by a significant decrease in ROS generation and NF-κB activity and expression.

Conclusion

The present study suggests that the inhibitory effect of losartan on ADMA-induced monocytic adhesion may be related to downregulation of chemokine receptors by inhibiting the ROS/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ayabe N, Babaev VR, Tang Y, Tanizawa T, Fogo AB, Linton MF, Ichikawa I, Fazio S, Kon V (2006) Transiently heightened angiotensin II has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis 184:312–321

    Article  PubMed  CAS  Google Scholar 

  2. Han KH, Han KO, Green SR, Quehenberger O (1999) Expression of the monocyte chemoattractant protein-1 receptor CCR2 is increased in hypercholesterolemia. Differential effects of plasma lipoproteins on monocyte function. J Lipid Res 40:1053–1063

    PubMed  CAS  Google Scholar 

  3. Dol F, Martin G, Staels B, Mares AM, Cazaubon C, Nisato D, Bidouard JP, Janiak P, Schaeffer P, Herbert JM (2001) Angiotensin AT1 receptor antagonist irbesartan decreases lesion size, chemokine expression, and macrophage accumulation in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 38:395–405

    Article  PubMed  CAS  Google Scholar 

  4. Boisvert WA, Curtiss LK, Terkeltaub RA (2000) Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol Res 21:129–137

    Article  PubMed  CAS  Google Scholar 

  5. Nabah YN, Mateo T, Estelles R, Mata M, Zagorski J, Sarau H, Cortijo J, Morcillo EJ, Jose PJ, Sanz MJ (2004) Angiotensin II induces neutrophil accumulation in vivo through generation and release of CXC chemokines. Circulation 110:3581–3586

    Article  PubMed  CAS  Google Scholar 

  6. Sydow K, Schwedhelm E, Arakawa N, Bode-Boger SM, Tsikas D, Hornig B, Frolich JC, Boger RH (2003) ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc Res 57:244–252

    Article  PubMed  CAS  Google Scholar 

  7. Jiang DJ, Jia SJ, Dai Z, Li YJ (2006) Asymmetric dimethylarginine induces apoptosis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells. J Mol Cell Cardiol 40:529–539

    Article  PubMed  CAS  Google Scholar 

  8. Yuan Q, Jiang DJ, Chen QQ, Wang S, Xin HY, Deng HW, Li YJ (2007) Role of asymmetric dimethylarginine in homocysteine-induced apoptosis of vascular smooth muscle cells. Biochem Biophys Res Commun 356:880–885

    Article  PubMed  CAS  Google Scholar 

  9. Smirnova IV, Kajstura M, Sawamura T, Goligorsky MS (2004) Asymmetric dimethylarginine upregulates LOX-1 in activated macrophages: role in foam cell formation. Am J Physiol Heart Circ Physiol 287:H782–790

    Article  PubMed  CAS  Google Scholar 

  10. Delles C, Schneider MP, John S, Gekle M, Schmieder RE (2002) Angiotensin converting enzyme inhibition and angiotensin II AT1-receptor blockade reduce the levels of asymmetrical N(G),N(G)-dimethylarginine in human essential hypertension. Am J Hypertens 15:590–593

    Article  PubMed  CAS  Google Scholar 

  11. Ito A, Egashira K, Narishige T, Muramatsu K, Takeshita A (2002) Angiotensin-converting enzyme activity is involved in the mechanism of increased endogenous nitric oxide synthase inhibitor in patients with type 2 diabetes mellitus. Circ J 66:811–815

    Article  PubMed  CAS  Google Scholar 

  12. Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS (2002) Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol 90:974–982

    Article  PubMed  CAS  Google Scholar 

  13. Chen MF, Xie XM, Yang TL, Wang YJ, Zhang XH, Luo BL, Li YJ (2007) Involvement of asymmetric dimethylarginine in inflammatory reaction by angiotensin II. J Vasc Res 44:391–402

    Article  PubMed  Google Scholar 

  14. Scalera F, Borlak J, Beckmann B, Martens-Lobenhoffer J, Thum T, Täger M, Bode-Böger SM (2004) Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl L-arginine accelerates endothelial cell senescence. Arterioscler Thromb Vasc Biol 24:1816–1822

    Article  PubMed  CAS  Google Scholar 

  15. Wojciak-Stothard B, Torondel B, Tsang LY, Fleming I, Fisslthaler B, Leiper JM, Vallance P (2007) The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci 120:929–942

    Article  PubMed  CAS  Google Scholar 

  16. Miyazaki H, Matsuoka H, Cooke JP, Usui M, Ueda S, Okuda S, Imaizumi T (1999) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 99:1141–1146

    PubMed  CAS  Google Scholar 

  17. Furuki K, Adachi H, Enomoto M, Otsuka M, Fukami A, Kumagae S, Matsuoka H, Nanjo Y, Kakuma T, Imaizumi T (2008) Plasma level of asymmetric dimethylarginine (ADMA) as a predictor of carotid intima-media thickness progression: six-year prospective study using carotid ultrasonography. Hypertens Res 31(6):1185–1189

    Article  PubMed  CAS  Google Scholar 

  18. Iribarren C, Husson G, Sydow K, Wang BY, Sidney S, Cooke JP (2007) Asymmetric dimethyl-arginine and coronary artery calcification in young adults entering middle age: the CARDIA Study. Eur J Cardiovasc Prev Rehabil 14:222–229

    Article  PubMed  Google Scholar 

  19. Lu TM, Ding YA, Lin SJ, Lee WS, Tai HC (2003) Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur Heart J 24:1912–1919

    Article  PubMed  CAS  Google Scholar 

  20. Valkonen VP, Paiva H, Salonen JT, Lakka TA, Lehtimaki T, Laakso J, Laaksonen R (2001) Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358:2127–2128

    Article  PubMed  CAS  Google Scholar 

  21. Meinitzer A, Seelhorst U, Wellnitz B, Halwachs-Baumann G, Boehm BO, Winkelmann BR, März W (2007) Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health study). Clin Chem 53:273–283

    Article  PubMed  CAS  Google Scholar 

  22. Nijveldt RJ, Teerlink T, van der Hoven B, Siroen MP, Kuik DJ, Rauwerda JA, van Leeuwen PA (2003) Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin Nutr 22:23–30

    Article  PubMed  CAS  Google Scholar 

  23. Boger RH, Bode-Boger SM, Tsao PS, Lin PS, Chan JR, Cooke JP (2002) An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J Am Coll Cardiol 36:2287–2295

    Article  Google Scholar 

  24. Chan JR, Boger RH, Bode-Boger SM, Tangphao O, Tsao PS, Blaschke TF, Cooke JP (2000) Asymmetric dimethylarginine increases mononuclear cell adhesiveness in hypercholesterolemic humans. Arterioscler Thromb Vasc Biol 20:1040–1046

    PubMed  CAS  Google Scholar 

  25. Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG (2004) Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol 24:1397–1402

    Article  PubMed  CAS  Google Scholar 

  26. Bush E, Maeda N, Kuziel WA, Dawson TC, Wilcox JN, DeLeon H, Taylor WR (2000) CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 36:360–363

    PubMed  CAS  Google Scholar 

  27. Ishibashi M, Hiasa K, Zhao Q, Inoue S, Ohtani K, Kitamoto S, Tsuchihashi M, Sugaya T, Charo IF, Kura S, Tsuzuki T, Ishibashi T, Takeshita A, Egashira K (2004) Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res 94:1203–1210

    Article  PubMed  CAS  Google Scholar 

  28. Abe Y, Fornage M, Yang CY, Bui-Thanh NA, Wise V, Chen HH, Rangaraj G, Ballantyne CM (2007) L5, the most electronegative subfraction of plasma LDL, induces endothelial vascular cell adhesion molecule 1 and CXC chemokines, which mediate mononuclear leukocyte adhesion. Atherosclerosis 192:56–66

    Article  PubMed  CAS  Google Scholar 

  29. Lei ZB, Zhang Z, Jing Q, Qin YW, Pei G, Cao BZ, Li XY (2003) Ox-LDL upregulates CXCR2 expression in monocytes via scavenger receptors and activation of p38 mitogen-activated protein kinase. Cardiovasc Res 53:524–532

    Article  Google Scholar 

  30. Wells SM, Holian A (2007) Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. Am J Respir Cell Mol Biol 36:520–528

    Article  PubMed  CAS  Google Scholar 

  31. Hasegawa K, Wakino S, Tatematsu S, Yoshioka K, Homma K, Sugano N, Kimoto M, Hayashi K, Itoh H (2007) Role of asymmetric dimethylarginine in vascular injury in transgenic mice overexpressing dimethylarginie dimethylaminohydrolase 2. Circ Res 101:e2–10

    Article  PubMed  CAS  Google Scholar 

  32. Suda O, Tsutsui M, Morishita T, Tasaki H, Ueno S, Nakata S, Tsujimoto T, Toyohira Y, Hayashida Y, Sasaguri Y, Ueta Y, Nakashima Y, Yanagihara N (2004) Asymmetric dimethylarginine produces vascular lesions in endothelial nitric oxide synthase-deficient mice: involvement of renin-angiotensin system and oxidative stress. Arterioscler Thromb Vasc Biol 24:1682–1688

    Article  PubMed  CAS  Google Scholar 

  33. Yilmaz MI, Saglam M, Sonmez A, Caglar K, Cakir E, Kurt Y, Eyileten T, Tasar M, Acikel C, Oguz Y, Vural A, Yenicesu M (2007) Improving proteinuria, endothelial functions and asymmetric dimethylarginine levels in chronic kidney disease: ramipril versus valsartan. Blood Purif 25:327–335

    Article  PubMed  CAS  Google Scholar 

  34. Böger RH, Schwedhelm E, Maas R, Quispe-Bravo S, Skamira C (2005) ADMA and oxidative stress may relate to the progression of renal disease: rationale and design of the VIVALDI study. Vasc Med 10:S97–102

    Article  PubMed  Google Scholar 

  35. Napoli C, Sica V, de Nigris F, Pignalosa O, Condorelli M, Ignarro LJ, Liguori A (2004) Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J 148:e5

    Article  PubMed  CAS  Google Scholar 

  36. Jiang JL, Wang S, Li NS, Zhang XH, Deng HW, Li YJ (2007) The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells. Biochem Cell Biol 85:66–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (30600817) and the Doctor’s Creative Study of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Mei Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MF., Li, YJ., Yang, TL. et al. Losartan inhibits monocytic adhesion induced by ADMA via downregulation of chemokine receptors in monocytes. Eur J Clin Pharmacol 65, 457–464 (2009). https://doi.org/10.1007/s00228-008-0607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0607-2

Keywords

Navigation