Skip to main content

Advertisement

Log in

Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

NCX proteins explore the electrochemical gradient of Na+ to mediate Ca2+-fluxes in exchange with Na+ either in the Ca2+-efflux (forward) or Ca2+-influx (reverse) mode, whereas the directionality depends on ionic concentrations and membrane potential. Mammalian NCX variants (NCX1-3) and their splice variants are expressed in a tissue-specific manner to modulate the heartbeat rate and contractile force, the brain’s long-term potentiation and learning, blood pressure, renal Ca2+ reabsorption, the immune response, neurotransmitter and insulin secretion, apoptosis and proliferation, mitochondrial bioenergetics, etc. Although the forward mode of NCX represents a major physiological module, a transient reversal of NCX may contribute to EC-coupling, vascular constriction, and synaptic transmission. Notably, the reverse mode of NCX becomes predominant in pathological settings. Since the expression levels of NCX variants are disease-related, the selective pharmacological targeting of tissue-specific NCX variants could be beneficial, thereby representing a challenge. Recent structural and biophysical studies revealed a common module for decoding the Ca2+-induced allosteric signal in eukaryotic NCX variants, although the phenotype variances in response to regulatory Ca2+ remain unclear. The breakthrough discovery of the archaebacterial NCX structure may serve as a template for eukaryotic NCX, although the turnover rates of the transport cycle may differ ∼103-fold among NCX variants to fulfill the physiological demands for the Ca2+ flux rates. Further elucidation of ion-transport and regulatory mechanisms may lead to selective pharmacological targeting of NCX variants under disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CALX:

Drosophila melanogaster NCX ortholog

CAX:

Ca2+/anion exchanger

CBD:

Ca2+ binding domain

E Ca :

Equilibrium potential of Ca2+

E NCX :

Equilibrium potential of NCX

FRCRCFa:

NCX inhibitory cyclic hexapeptide

FRET:

Fluorescence resonance energy transfer.

I1-inactivation:

Na+-dependent inactivation of NCX

I2-inactivation:

Ca2+-dependent inactivation of NCX

NCLX:

Mitochondrial Na+/Ca2+ exchanger

NCKX:

Na+/Ca2+-K+ exchanger

NCX:

Na+/Ca2+ exchanger

n H :

Hill coefficient

NMR:

Nuclear magnetic resonance

SAXS:

Small-angle X-ray scattering

SLC8:

Solute carrier 8 gene family

SLC24:

Solute carrier 24 gene family

SR:

Sarcoplasmic reticulum

TM:

Trans-membrane segment

VCX:

Vacuolar Ca2+/H+ exchanger

LTCC:

L-type voltage-dependent Ca2+ channel

XIP:

NCX inhibitory peptide

References

  1. Ago Y, Kawasaki T, Nashida T, Ota Y, Cong Y, Kitamoto M et al (2011) SEA0400, a specific Na+/Ca2+ exchange inhibitor, prevents dopaminergic neurotoxicity in an MPTP mouse model of Parkinson’s disease. Neuropharmacology 61:1441–1451

    CAS  PubMed  Google Scholar 

  2. Altimimi HF, Fung EH, Winkfein RJ, Schnetkamp PP (2010) Residues contributing to the Na+-binding pocket of the SLC24 Na+/Ca2+-K+ exchanger NCKX2. J Biol Chem 285:15245–15255

    CAS  PubMed  Google Scholar 

  3. Andrikopoulos P, Baba A, Matsuda T, Djamgoz MBA, Yaqoob MM, Eccles SA (2011) Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 286:37919–37931

    CAS  PubMed  Google Scholar 

  4. Annunziato L, Pignataro G, Di Renzo GF (2004) Pharmacology of brain Na+/Ca2+ exchanger: From molecular biology to therapeutic perspectives. Pharmacol Rev 56:633–654

    CAS  PubMed  Google Scholar 

  5. Antoons G, Willems R, Sipido KR (2012) Alternative strategies in arrhythmia therapy: Evaluation of Na/Ca exchange as an anti-arrhythmic target. Pharmacol Ther 134:26–42

    CAS  PubMed  Google Scholar 

  6. Baazov D, Wang X, Khananshvili D (1999) Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe. Biochemistry 38:1435–1445

    CAS  PubMed  Google Scholar 

  7. Berberián G, Forcato D, Beaugé L (2009) Key role of a PtdIns-4,5P2 micro domain in ionic regulation of the mammalian heart Na+/Ca2+ exchanger. Cell Calcium 45:546–553

    PubMed  Google Scholar 

  8. Bers DM (2000) In: Excitation-contraction coupling and cardiac contractile force, 2nd edit., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 133–333

  9. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    CAS  PubMed  Google Scholar 

  10. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    CAS  PubMed  Google Scholar 

  11. Bers DM, Grandi E (2011) Human atrial fibrillation: insights from computational electrophysiological models. Trends Cardiovasc Med 21:145–150

    PubMed Central  PubMed  Google Scholar 

  12. Besserer GM, Ottolia M, Nicoll DA, Chaptal V, Cascio D, Philipson KD, Abramson J (2007) The second Ca2+-binding domain of the Na+/Ca2+ exchanger is essential for regulation: Crystal structures and mutational analysis. Proc Natl Acad Sci U S A 104:18467–18472

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Besserer GM, Nicoll DA, Abramson J, Philipson (2012) Characterization and purification of a Na+/Ca2+ exchanger from an archaebacterium. J Biol Chem 287:8652–8659

    CAS  PubMed  Google Scholar 

  14. Biesmans L, Macquaide N, Heinzel FR, Bito V, Smith GL, Sipido KR (2011) Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density. PLoS One 6(10):e25100

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: Its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  16. Blaustein MP, Leenen FH, Chen L, Golovina VA et al (2012) How NaCl raises blood pressure: A new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 302:H1031–H1049

    CAS  PubMed  Google Scholar 

  17. Boscia F, D’Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, Guida N, Annunziato L (2011) Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ. doi:10.1038/cdd.2011.125

    PubMed  Google Scholar 

  18. Boscia F, Gala R, Pignataro G, de Bartolomeis A, Cicale M et al (2006) Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 26:502–517

    CAS  PubMed  Google Scholar 

  19. Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, Annunziato L (2009) NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40:3608–3617

    CAS  PubMed  Google Scholar 

  20. Bourgonje VJ, Vos MA, Ozdemir S, Doisne N, Acsai K, Varro A et al (2013) Combined Na+/Ca2+ exchanger and L-type calcium channel block as a potential strategy to suppress arrhythmias and maintain ventricular function. Circ Arrhythm Electrophysiol 6:371–379

    CAS  PubMed  Google Scholar 

  21. Boyman L, Hagen BM, Giladi M, Hiller R, Lederer WJ, Khananshvili D (2011) Proton-sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J Biol Chem 286:28811–28820

    CAS  PubMed  Google Scholar 

  22. Boyman L, Hiller R, Lederer WJ, Khananshvili D (2008) Direct loading of the purified endogenous inhibitor into the cytoplasm of patched cardiomyocytes blocks the ion currents and calcium transport through the NCX1 protein. Biochemistry 47:6602–6611

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Boyman L, Mikhasenko H, Hiller R, Khananshvili D (2009) Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. J Biol Chem 284:6185–6193

    CAS  PubMed  Google Scholar 

  24. Boyman L, Williams GSB, Khananshvili D, Sekler I, Lederer WJ (2013) NCLX: The mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 59:205–213

    CAS  PubMed  Google Scholar 

  25. Breukels V, Konijnenberg A, Nabuurs SM, Touw WG, Vuister GW (2011) The second Ca2+-binding domain of NCX1 binds Mg2+ with high affinity. Biochemistry 50:8804–8812

    CAS  PubMed  Google Scholar 

  26. Cai X, Lytton J (2004) The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Mol Biol Evol 21:1692–1703

    CAS  PubMed  Google Scholar 

  27. Chaptal V, Besserer GM, Ottolia M, Nicoll DA, Cascio D, Philipson KD, Abramson J (2007) How does regulatory Ca2+ regulate the Na+-Ca2+ exchanger? Channels 1:397–403

    PubMed  Google Scholar 

  28. Chaptal V, Ottolia M, Mercado-Besserer G, Nicoll DA, Philipson KD, Abramson J (2009) Structure and functional analysis of a Ca2+ sensor mutant of the Na+/Ca2+ exchanger. J Biol Chem 284:14688–14692

    CAS  PubMed  Google Scholar 

  29. Chen L, Koh DS, Hille B (2003) Dynamics of calcium clearance in mouse pancreatic beta-cells. Diabetes 52:1723–1731

    CAS  PubMed  Google Scholar 

  30. Cheung JY, Rothblum LI, Moorman JR, Tucker AL, Song J, Ahlers BA, Carl LL, Wang J, Zhang XQ (2007) N Y Acad Sci 1099:119–134

    CAS  Google Scholar 

  31. Cheung JY, Zhang XQ, Song J, Gao E, Chan TO, Rabinowitz JE, Koch WJ, Feldman AM, Wang J (2013) Coordinated regulation of cardiac Na+/Ca2+ exchanger and Na+-K+-ATPase by phospholemman (FXYD1). Adv Exp Med Biol 961:175–190

    CAS  PubMed  Google Scholar 

  32. Cheung JY, Zhang XQ, Song J, Gao E, Rabinowitz JE, Chan TO, Wang J (2010) Phospholemman: A novel cardiac stress protein. Clin Transl Sci 4:189–196

    Google Scholar 

  33. Cook NJ, Kaupp UB (1988) Solubilization, purification and functional reconstitution of the sodium-calcium exchanger from bovine rod outer segments. J Biol Chem 263:11382–11388

    CAS  PubMed  Google Scholar 

  34. Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW (2010) Modes of neuronal calcium entry and homeostasis following cerebral ischemia. Stroke Res Treat 2010:316862

    CAS  PubMed Central  PubMed  Google Scholar 

  35. DiPolo R, Beauge L (2006) Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol Rev 86:155–203

    CAS  PubMed  Google Scholar 

  36. Doering AE, Eisner DA, Lederer WJ (1996) Cardiac Na-Ca exchange and pH. Ann N Y Acad Sci 779:182–198

    CAS  PubMed  Google Scholar 

  37. Doering AE, Lederer WJ (1994) The action of Na+ as a cofactor in the inhibition by cytoplasmic protons of the cardiac Na+-Ca2+ exchanger in the guinea-pig. J Physiol 480:9–20

    CAS  PubMed  Google Scholar 

  38. Dunn J, Elias CL, Le HD, Omelchenko A, Hryshko LV, Lytton J (2002) The molecular determinants of ionic regulatory differences between brain and kidney Na+/Ca2+ exchanger (NCX1) isoforms. J Biol Chem 277:33957–33962

    CAS  PubMed  Google Scholar 

  39. Dyck C, Omelchenko A, Elias CL, Quednau BD, Philipson KD, Hnatowich M, Hryshko LV (1999) Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na+-Ca2+ exchanger. J Gen Physiol 114:701–711

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Eisner D, Sipido K (2004) Sodium calcium exchange in the heart—Necessity or luxury? Circ Res 95:549–551

    CAS  PubMed  Google Scholar 

  41. Forrest LR, Krämer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochem Biophys Acta 1807:167–188

    CAS  PubMed  Google Scholar 

  42. Gao Z, Rasmussen TP, Li Y, Kutschke W, Koval OM, Wu Y et al (2013) Genetic inhibition of Na+-Ca2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circ Res 112:309–317

    CAS  PubMed  Google Scholar 

  43. Giladi M, Bohbot H, Buki T, Schulze DH, Hiller R, Khananshvili D (2012) Dynamic features of allosteric Ca2+ sensor in tissue-specific NCX variants. Cell Calcium 51:478–485

    CAS  PubMed  Google Scholar 

  44. Giladi M, Boyman L, Mikhasenko H, Hiller R, Khananshvili D (2010) Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J Biol Chem 285:28117–28125

    CAS  PubMed  Google Scholar 

  45. Giladi M, Friedberg I, Fang X, Hiller R, Wang YX, Khananshvili D (2012) G503 is obligatory for coupling of regulatory domains in NCX proteins. Biochemistry 51:7313–7320

    CAS  PubMed  Google Scholar 

  46. Giladi M, Hiller R, Hirsch JA, Khananshvili D (2013) Population shift underlies Ca2+-induced regulatory transitions in the sodium-calcium exchanger (NCX). J Biol Chem 288:23141–23149

    CAS  PubMed  Google Scholar 

  47. Giladi M, Khananshvili D (2013) Molecular determinants of allosteric regulation in NCX proteins. Adv Exp Med Biol 961:35–48

    CAS  PubMed  Google Scholar 

  48. Giladi M, Sasson Y, Fang X, Hiller R, Buki T, Wang Y-X, Hirsch JA, Khananshvili D (2012) A common Ca2+-driven interdomain module governs eukaryotic NCX regulation. PloS One 7(6):e39985

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Ginsburg KS, Weber CR, Bers DM (2013) Cardiac Na+–Ca2+ exchanger: Dynamics of Ca2+-dependent activation and deactivation in intact myocytes. J Physiol 591:2067–2086

    CAS  PubMed  Google Scholar 

  50. Goldhaber JI, Philipson KD (2013) Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: Implications for heart disease. Adv Exp Med Biol 961:355–364

    CAS  PubMed  Google Scholar 

  51. Greiser M, Lederer WJ, Schotten U (2011) Alterations of atrial Ca2+ handling as cause and consequence of atrial fibrillation. Cardiovasc Res 89:722–733

    CAS  PubMed  Google Scholar 

  52. Guo K, Wang X, Gao G, Huang C, Elmslie KS, Peterson BZ (2010) Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels. Am J Physiol Cell Physiol 99:C1203–C1211

    Google Scholar 

  53. Herchuelz A, Kamagate A, Ximenes H, Van Eylen F (2007) Role of Na/Ca exchange and the plasma membrane Ca2+-ATPase in beta cell function and death. Ann N Y Acad Sci 1099:456–467

    CAS  PubMed  Google Scholar 

  54. Herchuelz A, Nguidjoe E, Jiang L, Pachera N (2012) β-Cell preservation and regeneration in diabetes by modulation of β-cell Ca2+ homeostasis. Diabetes Obes Metab 14(Suppl 3):136–142

    CAS  PubMed  Google Scholar 

  55. Herchuelz A, Nguidjoe E, Jiang L, Pachera N (2013) Na+/Ca2+ exchange and the plasma membrane Ca2+-ATPase in β-cell function and diabetes. Adv Exp Med Biol 961:385–394

    CAS  PubMed  Google Scholar 

  56. Herrmann S, Lipp P, Wiesen K, Stieber J, Nguyen H, Kaiser E, Ludwig A (2013) The cardiac sodium-calcium exchanger NCX1 is a key player in the initiation and maintenance of a stable heart rhythm. Cardiovasc Res 99(4):780–788. doi:10.1093/cvr/cvt154

    CAS  PubMed  Google Scholar 

  57. Hilge M, Aelen J, Vuister GW (2006) Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol Cell 22:15–25

    CAS  PubMed  Google Scholar 

  58. Hilge M, Aelen J, Foarce A, Perrakis A, Vuister GW (2009) Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc Natl Acad Sci U S A 106:14333–14331

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Hilgemann DW (1990) Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344:242–245

    CAS  PubMed  Google Scholar 

  60. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+/Ca2+ exchange and MgATP potassium channels by PIP2. Science 273:956–959

    CAS  PubMed  Google Scholar 

  61. Hilgemann DW, Collins A, Matsuoka S (1992) Steady-state and dynamic properties of cardiac Na/Ca. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol 100:933–961

    CAS  PubMed  Google Scholar 

  62. Hilgemann DW, Matsuoka S, Nagel GA, Collins A (1992) Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J Gen Physiol 100:905–932

    CAS  PubMed  Google Scholar 

  63. Hilgemann DW, Nicoll DA, Philipson KD (1991) Charge movement during Na+-translocation by native and cloned Na+/Ca2+ exchanger. Nature 352:715–718

    CAS  PubMed  Google Scholar 

  64. Hobai IA, Khananshvili D, Levi AJ (1997) The peptide ‘FRCRCFa’, dialyzed intracellularly, inhibits the Na/Ca exchange with high affinity in rabbit ventricular myocytes. Plugers Arch 433:455–463

    CAS  Google Scholar 

  65. Hryshko L (2008) What regulates Na+/Ca2+ exchange? Focus on “sodium-dependent inactivation of sodium/calcium exchange in transfected Chinese hamster ovary cells. Am J Physiol Cell Physiol 295:C869-871

    Google Scholar 

  66. Hryshko LV, Matsuoka S, Nicoll DA, Weiss JN, Schwarz EM et al (1996) Anomalous regulation of the Drosophila Na+-Ca2+ exchanger by Ca2+. J Gen Physiol 108:67–74

    CAS  PubMed  Google Scholar 

  67. Imahashi K, Pott C, Goldhaber JI, Steenbergen C, Philipson KD, Murphy E (2005) Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res 97:916–921

    CAS  PubMed  Google Scholar 

  68. Iwamoto T, Kita S, Zhang J, Blaustein MP, Arai Y, Yoshida S, Wakimoto K, Komuro I, Katsuragi T (2004) Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 10:1193–1199

    CAS  PubMed  Google Scholar 

  69. Iwamoto T, Watanabe Y, Kita S, Blaustein MP (2007) Na+/Ca2+ exchange inhibitors: a new class of calcium regulators. Cardiovasc Hematol Disord Drug Targets 3:188–198

    Google Scholar 

  70. Iwamoto T, Watano T, Shigekawa M (1996) A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397

    CAS  PubMed  Google Scholar 

  71. Jayasinghe ID, Baddeley D, Kong CH, Wehrens XH, Cannell MB, Soeller C (2012) Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J 102:L19–L21

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Jayasinghe I, Dj C, Soeller C, Cannell M (2012) Comparison of the organization of T-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clin Exp Pharmacol Physiol 39:469–476

    CAS  PubMed  Google Scholar 

  73. Jeffs GJ, Meloni BP, Sokolow S, Herchuelz A, Schurmans S, Knuckey NW (2008) NCX3 knockout mice exhibit increased hippocampal CA1 and CA2 neuronal damage compared to wild-type mice following global cerebral ischemia. Exp Neurol 210:268–273

    CAS  PubMed  Google Scholar 

  74. Jeon D, Yang YM, Jeong MJ, Philipson KD, Rhim H, Shin HS (2003) Enhanced learning and memory in mice lacking Na+-Ca2+ exchanger 2. Neuron 38:965–976

    CAS  PubMed  Google Scholar 

  75. John SA, Liao J, Jiang Y, Ottolia M (2013) The cardiac Na+-Ca2+ exchanger has two cytoplasmic ion permeation pathways. Proc Natl Acad Sci U S A 110:7500–7505

    CAS  PubMed Central  PubMed  Google Scholar 

  76. John SA, Ribalet B, Weiss JN, Philipson KD, Ottolia M (2011) Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc Natl Acad Sci U S A 108:1699–1704

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Kemeny LV, Schnur A, Czepan M, et al (2013) Na+/Ca2+ exchangers regulate the migration and proliferation of human gastric myofibroblasts. Am J Physiol Gastrointest Liver Physiol 305:G552-G563

    Google Scholar 

  78. Khananshvili D (2013) The SLC8 gene family of sodium-calcium exchangers (NCX)—Structure, function, and regulation in health and disease. Mol Aspects Med 34:220–235

    CAS  PubMed  Google Scholar 

  79. Khananshvili D (1998) Structure, mechanism and regulation of the cardiac sarcolemma Na+-Ca2+ exchanger. Mol Cell Biol 23B:309–356

    Google Scholar 

  80. Khananshvili D (1990) Distinction between the two basic mechanisms of cation transport in the cardiac Na+-Ca2+ exchange system. Biochemistry 29:2437–2442

    CAS  PubMed  Google Scholar 

  81. Khananshvili D (1991) Voltage-dependent modulation of ion binding and translocation in the cardiac Na+-Ca2+ exchange system. J Biol Chem 266:13764–13769

    CAS  PubMed  Google Scholar 

  82. Khananshvili D (1991) Mechanism of partial reactions in the cardiac Na+-Ca2+ exchanger. Ann N Y Acad Sci 639:85–98

    CAS  PubMed  Google Scholar 

  83. Khananshvili D, Shaulov G, Weil-Maslansky E (1995) Rate-limiting mechanisms of exchange reactions in the cardiac sarcolemma Na+-Ca2+ exchanger. Biochemistry 34:10290–10297

    CAS  PubMed  Google Scholar 

  84. Khananshvili D, Shaulov G, Weil-Maslansky E, Baazov D (1995) Positively charged cyclic hexapeptides, novel blockers for the cardiac sarcolemma Na+-Ca2+ exchange. J Biol Chem 270:16182–16188

    CAS  PubMed  Google Scholar 

  85. Khananshvili D, Weil-Maslansky E, Baazov D (1996) Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent, ions, and temperature. Ann N Y Acad Sci 779:217–235

    CAS  PubMed  Google Scholar 

  86. Kofuji P, Lederer WJ, Schulze DH (1994) Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem 269:5145–5149

    CAS  PubMed  Google Scholar 

  87. Lakatta EG, DiFrancesco D (2009) What keeps us ticking: A funny current, a calcium clock, or both? J Mol Cell Cardiol 47:157–170

    CAS  PubMed  Google Scholar 

  88. Laüger P (1987) Voltage dependence of sodium-calcium exchange: Predictions from kinetic models. J Membr Biol 99:1–11

    PubMed  Google Scholar 

  89. Lee SL, Yu AS, Lytton J (1994) Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J Biol Chem 269:14849–14852

    CAS  PubMed  Google Scholar 

  90. Li Z, Nicoll DA, Collins A, Hilgemann DW et al (1991) Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 266:1014–1020

    CAS  PubMed  Google Scholar 

  91. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y (2012) Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:686–690

    CAS  PubMed  Google Scholar 

  92. Linck B, Bokník P, Huke S, Kirchhefer U et al (2000) Functional properties of transgenic mouse hearts overexpressing both calsequestrin and the Na+/Ca2+exchanger. J Pharmacol Exp Ther 294:648–657

    CAS  PubMed  Google Scholar 

  93. Linck B, Qiu Z, He Z, Tong Q, Hilgemann DW, Philipson KD (1998) Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am J Physiol 274:C415–C423

    CAS  PubMed  Google Scholar 

  94. Lytton J (2007) Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+-transport. Biochem J 406:365–382

    CAS  PubMed  Google Scholar 

  95. Maack C, Ganesan A, Sidor A, O’Rourke B (2005) Cardiac sodium-calcium exchanger is regulated by allosteric calcium and exchanger inhibitory peptide at distinct sites. Circ Res 96:91–99

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Ma B, Tsai C-J, Haliloğlu T, Nussinov R (2011) Dynamic allostery: Linkers are not merely flexible. Structure 19:907–917

    CAS  PubMed  Google Scholar 

  97. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    CAS  PubMed  Google Scholar 

  98. Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y et al (2001) SEA0400, a novel and selective inhibitor of the Na+/Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:249–256

    CAS  PubMed  Google Scholar 

  99. Matsuoka S, Nicoll DA, Hryshko LV, Levitsky DO, Weiss JN, Philipson KD (1995) Regulation of the cardiac Na+-Ca2+ exchanger by Ca2+. Mutational analysis of the Ca2+-binding domain. J Gen Physiol 105:403–420

    CAS  PubMed  Google Scholar 

  100. Matsuoka S, Nicoll DA, Reilly RF, Hilgemann DW, Philipson KD (1993) Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc Natl Acad Sci U S A 90:3870–3874

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Matsuoka S, Nicoll DA, He Z, Philipson KD (1997) Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J Gen Physiol 109:273–286

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Meszaros J, Khananshvili D, Hart G (2001) Mechanisms underlying delayed afterdepolarizations in hypertrophied left ventricular myocytes of rats. Am J Physiol Heart Circ Physiol 281:H903–H914

    CAS  PubMed  Google Scholar 

  103. Milberg P, Pott C, Frommeyer G, Fink M, Ruhe M, Matsuda T, Baba A et al (2012) Acute inhibition of the Na+/Ca2+ exchanger reduces proarrhythmia in an experimental model of chronic heart failure. Heart Rhythm 9:570–578

    PubMed  Google Scholar 

  104. Nagy ZA, Virág L, Tóth A, Biliczki P, Acsai K, Bányász T, Nánási P, Papp JG, Varró A (2004) Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed after depolarization in canine heart. Br J Pharmacol 143:827–831

    CAS  PubMed  Google Scholar 

  105. Neco P, Rose B, Huynh N, Zhang R, Bridge JH, Philipson KD, Goldhaber JI (2010) Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys J 99:755–764

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Nicoll DA, Applebury ML (1989) Purification of the bovine rod outer segment Na+/Ca2+ exchanger. J Biol Chem 264:16207–16213

    CAS  PubMed  Google Scholar 

  107. Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250:562–565

    CAS  PubMed  Google Scholar 

  108. Nicoll DA, Sawaya MR, Kwon S, Cascio D, Philipson KD, Abramson J (2006) The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J Biol Chem 281:21577–21581

    CAS  PubMed  Google Scholar 

  109. Niggli E, Lederer WJ (1991) Molecular operations of the sodium-calcium exchanger revealed by conformational currents. Nature 349:621–624

    CAS  PubMed  Google Scholar 

  110. Nishizawa T, Kita S, Maturana AD, Furuya N, Hirata K, Kasuya G, Ogasawara S, Dohmae N, Iwamoto T, Ishitani R and Nureki O. (2013). Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger. Science www.sciencemag.org/content/early/recent

  111. Nita II, Hershfinkel M, Fishman D, Ozeri E, Rutter GA, Sensi SL, Khananshvili D, Lewis EC, Sekler I. The mitochondrial Na+/Ca2+ exchanger upregulates glucose dependent Ca2+ signaling linked to insulin secretion. PloS One 7(10):e46649

  112. Noda M, Ifuku M, Mori Y, Verkhratsky A (2013) Calcium influx through reversed NCX controls migration of microglia. Adv Exp Med Biol 961:289–294

    CAS  PubMed  Google Scholar 

  113. Ohtsuka M, Takano H, Suzuki M, Zou Y, Akazawa H et al (2004) Role of Na+-Ca2+ exchanger in myocardial ischemia/reperfusion injury: Evaluation using a heterozygous Na+-Ca2+ exchanger knockout mouse model. Biochem Biophys Res Commun 314:849–853

    CAS  PubMed  Google Scholar 

  114. Omelchenko A, Dyck C, Hnatowich M, Buchko J, Nicoll DA et al (1998) Functional differences in ionic regulation between alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila melanogaster. J Gen Physiol 111:691–702

    CAS  PubMed Central  PubMed  Google Scholar 

  115. On C, Marshall CR, Chen N, Moyes CD, Tibbits GF (2008) Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol Biol 8:127–142

    PubMed Central  PubMed  Google Scholar 

  116. On C, Marshall CR, Perry SF, Le HD, Yurkov V, Omelchenko A, Hnatowich M, Hryshko LV, Tibbits GF (2009) Characterization of zebrafish (Danio rerio) NCX4: A novel NCX with distinct electrophysiological properties. Am J Physiol Cell Physiol 296:C173–C181

    CAS  PubMed  Google Scholar 

  117. Ota Y, Kawanai T, Watanabe R, Nishimura A, Ago Y, Takuma K, Matsuda T (2013) Effect of overexpression of the brain-specific Na+/Ca2+ exchanger splice variant NCX1.5 on NO cytotoxicity in HEK293 cells. J Pharmacol Sci 121:351–354

    CAS  PubMed  Google Scholar 

  118. Ottolia M, Nicoll DA, John S, Philipson KD (2010) Interactions between Ca2+ binding domains of the Na+-Ca2+ exchanger and secondary regulation. Channels 4:1–4

    Google Scholar 

  119. Ottolia M, Nicoll DA, Philipson KD (2009) Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J Biol Chem 284:32735–32741

    CAS  PubMed  Google Scholar 

  120. Ottolia M, Torres N, Bridge JH, Philipson KD, Goldhaber JI (2013) Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol 61:28–33

    CAS  PubMed  Google Scholar 

  121. Palty R, Hershfinkel M, Sekler I (2012) Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 287:31650–31657

    CAS  PubMed  Google Scholar 

  122. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Parnis J, Montana V, Delgado-Martinez I, Matyash V, Parpura V, Kettenmann H, Sekler I, Nolte CJ (2013) Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes. J Neurosci 33:7206–7219

    CAS  PubMed  Google Scholar 

  124. Pavlovic D, Fuller W, Shattock MJ (2013) Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol 61:83–93

    CAS  PubMed  Google Scholar 

  125. Philipson KD, Nicoll DA (2000) Sodium-calcium exchange: A molecular perspective. Annu Rev Physiol 62:111–133

    CAS  PubMed  Google Scholar 

  126. Pobarko D, Fameli N, Kuo KH, van Breemen C (2008) Ca2+ signaling in smooth muscle: TRPC6, NCX and Na+ in nanodomains. Channels 2:10–12

    Google Scholar 

  127. Pott C, Eckardt L, Goldhaber JI (2011) Triple threat: the Na+/Ca2+ exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr Drug Targets 12:737–747

    CAS  PubMed  Google Scholar 

  128. Pott C, Philipson KD, Goldhaber JI (2005) Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: Reduced transsarcolemmal Ca2+ flux. Circ Res 97:1288–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Puglisi JL, Negroni JA, Chen-Izu Y, Bers DM (2013) The force-frequency relationship: Insights from mathematical modeling. Adv Physiol Educ 37:28–34

    PubMed  Google Scholar 

  130. Reeves JP, Hale CC (1984) The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 259:7733–7739

    CAS  PubMed  Google Scholar 

  131. Reeves JP, Condrescu M (2008) Ionic regulation of the cardiac sodium-calcium exchanger. Channels 2:322–328

    PubMed  Google Scholar 

  132. Ren X, Philipson K (2013) The topology of the cardiac Na+/Ca2+ exchanger, NCX1. J Mol Cell Cardiol 57:68–71

    CAS  PubMed  Google Scholar 

  133. Reuter H, Henderson SA, Han T, Matsuda T, Baba A, Ross RS, Goldhaber JI, Philipson KD (2002) Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ Res 91:90–92

    CAS  PubMed  Google Scholar 

  134. Reuter H, Henderson SA, Han T, Mottino GA, Frank JS, Ross RS, Goldhaber JI, Philipson KD (2003) Cardiac excitation-contraction coupling in the absence of Na+-Ca2+ exchange. Cell Calcium 34:19–26

    CAS  PubMed  Google Scholar 

  135. Reyes RC, Verkhratsky A, Parpura V (2012) Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neurol 4(1):e00075

    Google Scholar 

  136. Rispoli G, Navangione A, Vellani V (1995) Transport of K + by Na + -Ca2+, K + exchanger in isolated rods of lizard retina. Biophys J 69:74–81

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Roome CJ, Power EM, Empson RM (2013) Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse. J Neurophysiol 109:1669–1680

    CAS  PubMed  Google Scholar 

  138. Rose CR, Karus C (2013) Two sides of the same coin: Sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61:1191–1205

    PubMed  Google Scholar 

  139. Salinas PK, Brüschweiler-Li L, Johnson E, Brüschweiler R (2011) Ca2+ binding alters the inter-domain flexibility between the cytoplasmic Ca-binding domains in the Na/Ca exchanger. J Biol Chem 286:32123–32131

    CAS  PubMed  Google Scholar 

  140. Schnetkamp PP (2013) The SLC24 gene family of Na+/Ca2+-K+ exchangers: From sight and smell to memory consolidation and skin pigmentation. Mol Asp Med 34:455–464

    CAS  Google Scholar 

  141. Sirabella R, Secondo A, Pannaccione A, Molinaro P, Formisano L, Guida N, Di Renzo G, Annunziato L, Cataldi M (2012) ERK1/2, p38, and JNK regulate the expression and the activity of the three isoforms of the Na+/Ca2+ exchanger, NCX1, NCX2, and NCX3, in neuronal PC12 cells. J Neurochem 122:911–922

    CAS  PubMed  Google Scholar 

  142. Sobie EA, Song LS, Lederer WJ (2002) Termination of cardiac Ca2+ sparks: An investigative mathematical model of calcium-induced calcium release. Biophys J 83:59–78

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Stein WD (1986) Transport and diffusion across cell membranes. Acad. Press, NY, pp 55–120

    Google Scholar 

  144. Svensson KJ, Kucharzewska P, Christianson HC et al (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci U S A 108:13147–13152

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Takuma K, Ago Y, Matsuda T (2013) The glial sodium-calcium exchanger: A new target for nitric oxide-mediated cellular toxicity. Curr Protein Pept Sci 14:43–50

    CAS  PubMed  Google Scholar 

  146. Takuma K, Tanaka T, Takahashi T, Hiramatsu N, Ota Y, Ago Y, Matsuda T (2012) Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesia in hemi-Parkinsonian rats. Eur J Pharmacol 683:166–173

    CAS  PubMed  Google Scholar 

  147. Tóth A, Kiss L, Varró A, Nánási PP (2009) Potential therapeutic effects of Na+/Ca2+ exchanger inhibition in cardiac diseases. Curr Med Chem 16:3294–3321

    PubMed  Google Scholar 

  148. Tsai CJ, del Sol A, Nussinov R (2008) Allostery: Absence of a change in shape does not imply that allostery is not at play. J Mol Biol 378:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Valsecchi V, Pignataro G, Del Prete A, Sirabella R et al (2011) NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42:754–763

    CAS  PubMed  Google Scholar 

  150. Voigt N, Li N, Wang Q, Wang W, Trafford AW et al (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070

    CAS  PubMed  Google Scholar 

  151. Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH, Roe-Zurz Z, Risenmay AJ, Sali A, Stroud RM (2013) Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499:107–110

    CAS  PubMed  Google Scholar 

  152. Weisbrod D, Peretz A, Ziskind A, Menaker N, Oz S, Barad L, Itskovitz-Eldor J, Dascal N, Khananshvili D, Binah O, Attali B (2013) The Ca2+-activated K+ channel IKCa/SK4: A critical new player in human embryonic cardiac pacemaker. Proc Natl Acad Sci U S A 110:1685–1694

    Google Scholar 

  153. Wu M, Tong S, Gonzalez J, Jayaraman V, Spudich JL, Zheng L (2011) Structural basis of the Ca2+ inhibitory mechanism of Drosophila Na/Ca exchanger CALX and its modification by alternative splicing. Structure 19:1509–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Wu M, Tonga S, Walterspergerb S, Diederichsc K, Wang M and Zheng L (2013) Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proc Natl Acad Sci doi: 10.1073/pnas.1302515110

  155. Zhang J (2013) New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure. Adv Exp Med Biol 961:329–343

    CAS  PubMed  Google Scholar 

  156. Zhang S, Dong H, Rubin LJ, Yuan JX (2007) Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C2297–C2305

    CAS  PubMed  Google Scholar 

  157. Zhang J, Ren C, Chen L, Navedo MF, Antos LK et al (2010) Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 298:H1472–H1483

    CAS  PubMed  Google Scholar 

  158. Zhang J, Ren C, Chen L, Navedo MF et al (2010) Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 298:H1472–H1483

    CAS  PubMed  Google Scholar 

  159. Zulian A, Baryshnikov SG, Linde CI, Hamlyn JM, Ferrari P, Golovina VA (2010) Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am J Physiol Heart Circ Physiol 299:H624–H633

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israeli Ministry of Health grant #2010-3-6266, the USA-Israeli Binational Research grant # 2009-334, and the Israel Science Foundation grant #23/10. Financial support from the Fields Foundation is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Khananshvili.

Additional information

In memoriam John Reeves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khananshvili, D. Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Arch - Eur J Physiol 466, 43–60 (2014). https://doi.org/10.1007/s00424-013-1405-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1405-y

Keywords

Navigation