Skip to main content

Advertisement

Log in

The Nax (SCN7A) channel: an atypical regulator of tissue homeostasis and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

No data has been generated in the completion of this review article.

References

  1. Namadurai S, Yereddi NR, Cusdin FS, Huang CL-H, Chirgadze DY, Jackson AP (2015) A new look at sodium channel β subunits. Open Biol 5:140192

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hull JM, Isom LL (2018) Voltage-gated sodium channel beta subunits: the power outside the pore in brain development and disease. Neuropharmacology 132:43–57

    Article  CAS  PubMed  Google Scholar 

  3. Brackenbury WJ, Isom LL (2011) Na channel beta subunits: overachievers of the ion channel family. Front Pharmacol 2:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu L, Ding X, Wang T, Mou S, Sun H, Hou T (2019) Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today 24:1389–1397

    Article  CAS  PubMed  Google Scholar 

  5. Noda M, Hiyama TY (2015) The Na-x channel: what it is and what it does. Neuroscientist 21:399–412

    Article  CAS  PubMed  Google Scholar 

  6. George AL Jr, Knittle TJ, Tamkun MM (1992) Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: evidence for a distinct gene family. Proc Natl Acad Sci USA 89:4893–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Felipe A, Knittle TJ, Doyle KL, Tamkun MM (1994) Primary structure and differential expression during development and pregnancy of a novel voltage-gated sodium channel in the mouse. J Biol Chem 269:30125–30131

    Article  CAS  PubMed  Google Scholar 

  8. Gautron S, Dos Santos G, Pinto-Henrique D, Koulakoff A, Gros F, Berwald-Netter Y (1992) The glial voltage-gated sodium channel: cell- and tissue-specific mrna expression. Proc Natl Acad Sci USA 89:7272–7276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akopian AN, Souslova V, Sivilotti L, Wood JN (1997) Structure and distribution of a broadly expressed atypical sodium channel. FEBS Lett 400:183–187

    Article  CAS  PubMed  Google Scholar 

  10. Widmark J, Sundstrom G, Ocampo Daza D, Larhammar D (2011) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes. Mol Biol Evol 28:859–871

    Article  CAS  PubMed  Google Scholar 

  11. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA 89:10910–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T et al (2000) Nav2/nag channel is involved in control of salt-intake behavior in the cns. J Neurosci 20:7743–7751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S et al (2006) Sodium-level-sensitive sodium channel nax is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol 290:R568–R576

    Article  CAS  PubMed  Google Scholar 

  14. Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S et al (2002) Na(x) channel involved in cns sodium-level sensing. Nat Neurosci 5:511–512

    Article  CAS  PubMed  Google Scholar 

  15. Hiyama TY, Watanabe E, Okado H, Noda M (2004) The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior. J Neurosci 24:9276–9281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsumoto M, Hiyama TY, Kuboyama K, Suzuki R, Fujikawa A, Noda M (2015) Channel properties of nax expressed in neurons. PLoS ONE 10:e0126109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tremblay C, Berret E, Henry M, Nehme B, Nadeau L, Mouginot D (2011) Neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus. J Neurophysiol 105:650–660

    Article  PubMed  Google Scholar 

  18. Nehmé B, Henry M, Mouginot D (2012) The expression pattern of the Na+ sensor, Nax in the hydromineral homeostatic network: a comparative study between the rat and mouse. Front Neuroanat 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berret E, Nehme B, Henry M, Toth K, Drolet G, Mouginot D (2013) Regulation of central Na+ detection requires the cooperative action of the nax channel and alpha1 isoform of Na+/K+-atpase in the Na+-sensor neuronal population. J Neurosci 33:3067–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berret E, Smith PY, Henry M, Soulet D, Hebert SS, Toth K et al (2014) Extracellular Na(+) levels regulate formation and activity of the nax/alpha1-Na(+)/K(+)-atpase complex in neuronal cells. Front Cell Neurosci 8:413

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H et al (2007) Glial nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54:59–72

    Article  CAS  PubMed  Google Scholar 

  22. Unezaki S, Katano T, Hiyama TY, Tu NH, Yoshii S, Noda M et al (2014) Involvement of nax sodium channel in peripheral nerve regeneration via lactate signaling. Eur J Neurosci 39:720–729

    Article  PubMed  Google Scholar 

  23. Tu NH, Katano T, Matsumura S, Funatsu N, Pham VM, Ji F et al (2017) Na+/K+-atp ase coupled to endothelin receptor type b stimulates peripheral nerve regeneration via lactate signalling. Eur J Neurosci 46:2096–2107

    Article  PubMed  Google Scholar 

  24. Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E et al (2013) Endothelin-3 expression in the subfornical organ enhances the sensitivity of nax, the brain sodium-level sensor, to suppress salt intake. Cell Metab 17:507–519

    Article  CAS  PubMed  Google Scholar 

  25. Sakuta H, Nishihara E, Hiyama TY, Lin CH, Noda M (2016) Nax signaling evoked by an increase in [Na+] in csf induces water intake via eet-mediated trpv4 activation. Am J Physiol Regul Integr Comp Physiol 311:R299-306

    Article  PubMed  Google Scholar 

  26. Sakuta H, Lin CH, Yamada M, Kita Y, Tokuoka SM, Shimizu T et al (2020) Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na(+)] in body fluids. Neurosci Res 154:45–51

    Article  CAS  PubMed  Google Scholar 

  27. Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K et al (2019) [Na(+)] increases in body fluids sensed by central nax induce sympathetically mediated blood pressure elevations via H(+)-dependent activation of asic1a. Neuron 101(60–75):e6

    Google Scholar 

  28. Xu W, Jia SX, Xie P, Zhong AM, Galiano RD, Mustoe TA et al (2014) The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status. J Invest Dermatol 134:1044–1055

    Article  CAS  PubMed  Google Scholar 

  29. Xu W, Hong SJ, Zeitchek M, Cooper G, Jia S, Xie P et al (2015) Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (enac) in the skin. J Invest Dermatol 135:796–806

    Article  CAS  PubMed  Google Scholar 

  30. Xu W, Hong SJ, Zhong A, Xie P, Jia S, Xie Z et al (2015) Sodium channel nax is a regulator in epithelial sodium homeostasis. Sci Transl Med 7:1–13

    Article  Google Scholar 

  31. Halawi A, Abbas O, Mahalingam M (2014) S100 proteins and the skin: a review. J Eur Acad Dermatol Venereol 28:405–414

    Article  CAS  PubMed  Google Scholar 

  32. Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K (2004) S100 proteins in the epidermis. J Invest Dermatol 123:23–33

    Article  CAS  PubMed  Google Scholar 

  33. Broome AM, Ryan D, Eckert RL (2003) S100 protein subcellular localization during epidermal differentiation and psoriasis. J Histochem Cytochem 51:675–685

    Article  CAS  PubMed  Google Scholar 

  34. Zhong A, Xu W, Zhao J, Xie P, Jia S, Sun J et al (2016) S100a8 and s100a9 are induced by decreased hydration in the epidermis and promote fibroblast activation and fibrosis in the dermis. Am J Pathol 186:109–122

    Article  CAS  PubMed  Google Scholar 

  35. Zhao J, Zhong A, Friedrich EE, Jia S, Xie P, Galiano RD et al (2017) S100a12 induced in the epidermis by reduced hydration activates dermal fibroblasts and causes dermal fibrosis. J Invest Dermatol 137:650–659

    Article  CAS  PubMed  Google Scholar 

  36. Zhao JL, Jia SX, Xie P, Friedrich E, Galiano RD, Qi SH et al (2020) Knockdown of sodium channel Na-x reduces dermatitis symptoms in rabbit skin. Lab Invest 100:751–761

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Xie P, Galiano RD, Qi S, Mao R, Mustoe TA et al (2019) Imiquimod-induced skin inflammation is relieved by knockdown of sodium channel nax. Exp Dermatol 28:576–584

    Article  CAS  PubMed  Google Scholar 

  38. Husi H, Sanchez-Nino MD, Delles C, Mullen W, Vlahou A, Ortiz A et al (2013) A combinatorial approach of proteomics and systems biology in unravelling the mechanisms of acute kidney injury (aki): involvement of nmda receptor grin1 in murine aki. BMC Syst Biol 7:110

    Article  PubMed  PubMed Central  Google Scholar 

  39. Craciun FL, Bijol V, Ajay AK, Rao P, Kumar RK, Hutchinson J et al (2016) Rna sequencing identifies novel translational biomarkers of kidney fibrosis. J Am Soc Nephrol 27:1702–1713

    Article  CAS  PubMed  Google Scholar 

  40. Pavkovic M, Pantano L, Gerlach CV, Brutus S, Boswell SA, Everley RA et al (2019) Multi omics analysis of fibrotic kidneys in two mouse models. Sci Data 6:92

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arvaniti E, Moulos P, Vakrakou A, Chatziantoniou C, Chadjichristos C, Kavvadas P et al (2016) Whole-transcriptome analysis of uuo mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci Rep 6:26235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng ZC, Duan LJ, Hao XX, Li ZP, Wang GP, Xu CS (2012) Ten paths of pka signaling pathway regulate hepatocyte proliferation in rat liver regeneration. Genes Genomics 34:391–399

    Article  CAS  Google Scholar 

  43. Carson J, Robinson M, Ramm G, Gobert G (2021) Rna sequencing of lx-2 cells treated with tgf-β1 identifies genes associated with early hepatic stellate cell activation. https://doi.org/10.21203/rs.3.rs-385581/v1(preprint)

  44. Tugues S, Morales-Ruiz M, Fernandez-Varo G, Ros J, Arteta D, Munoz-Luque J et al (2005) Microarray analysis of endothelial differentially expressed genes in liver of cirrhotic rats. Gastroenterology 129:1686–1695

    Article  CAS  PubMed  Google Scholar 

  45. Sun J, Wang J, Zhang N, Yang R, Chen K, Kong D (2019) Identification of global mrna expression profiles and comprehensive bioinformatic analyses of abnormally expressed genes in cholestatic liver disease. Gene 707:9–21

    Article  CAS  PubMed  Google Scholar 

  46. Buga AM, Scholz CJ, Kumar S, Herndon JG, Alexandru D, Cojocaru GR et al (2012) Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS ONE 7:e50985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheadle JP (1994) Population variation of common cystic fibrosis mutations. Hum Mutat 4:167–177

    Article  Google Scholar 

  48. Xu Y, Liu C, Clark JC, Whitsett JA (2006) Functional genomic responses to cystic fibrosis transmembrane conductance regulator (cftr) and cftrδ508 in the lung. J Biol Chem 281:11279–11291

    Article  CAS  PubMed  Google Scholar 

  49. Cecchini MJ, Hosein K, Howlett CJ, Joseph M, Mura M (2018) Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis. Respir Res 19:153

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hansen T, Galougahi KK, Besnier M, Genetzakis E, Tsang M, Finemore M et al (2020) The novel p2x7 receptor pkt100 improves right ventricular function and survival in pulmonary hypertension. Am J Physiol Heart Circ Physiol 319: H183–H191

  51. Schneider MP, Boesen EI, Pollock DM (2007) Contrasting actions of endothelin eta and etb receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 47:731–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodríguez-Pascual F, Busnadiego O, González-Santamaría J (2014) The profibrotic role of endothelin-1: is the door still open for the treatment of fibrotic diseases? Life Sci 118:156–164

    Article  PubMed  Google Scholar 

  53. Clozel M, Salloukh H (2005) Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Ann Med 37:2–12

    Article  CAS  PubMed  Google Scholar 

  54. Ross B, D’Orleans-Juste P, Giaid A (2010) Potential role of endothelin-1 in pulmonary fibrosis: from the bench to the clinic. Am J Respir Cell Mol Biol 42:16–20

    Article  CAS  PubMed  Google Scholar 

  55. Swigris JJ, Brown KK (2010) The role of endothelin-1 in the pathogenesis of idiopathic pulmonary fibrosis. BioDrugs 24:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lagares D, Garcia-Fernandez RA, Jimenez CL, Magan-Marchal N, Busnadiego O, Lamas S et al (2010) Endothelin 1 contributes to the effect of transforming growth factor beta1 on wound repair and skin fibrosis. Arthritis Rheum 62:878–889

    Article  CAS  PubMed  Google Scholar 

  57. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K et al (2016) Knockout of endothelin type b receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther 18:113

    Article  PubMed  PubMed Central  Google Scholar 

  58. Benyamine A, Magalon J, Cointe S, Lacroix R, Arnaud L, Bardin N et al (2017) Increased serum levels of fractalkine and mobilisation of cd34(+)cd45(-) endothelial progenitor cells in systemic sclerosis. Arthritis Res Ther 19:60

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsuchiya Y, Wakabayashi A, Matsukura S, Osakabe Y, Sekiguchi A, Inoue D et al (2016) Tumor necrosis factor-alpha and transforming growth factor-beta synergistically upregulate endothelin-1 expression in human bronchial epithelial cells beas-2b. Showa Univ J Med Sci 28:101–111

    Article  CAS  Google Scholar 

  60. Hajialilo M, Noorabadi P, Tahsini Tekantapeh S, Malek Mahdavi A (2017) Endothelin-1, alpha-klotho, 25(oh) vit d levels and severity of disease in scleroderma patients. Rheumatol Int 37:1651–1657

    Article  CAS  PubMed  Google Scholar 

  61. Riemekasten G, Philippe A, Lukitsch I, Slowinski T, Naether M (2010) Systemic sclerosis as prototypic disease with high levels of functional antibodies against angiotensin ii type-1 and endothelin-1 type a receptor strongly predicting prognosis. Ann Rheum Dis 69:A5-A

    Article  Google Scholar 

  62. Hartopo AB, Arfian N, Nakayama K, Suzuki Y, Yagi K, Emoto N (2018) Endothelial-derived endothelin-1 promotes pulmonary vascular remodeling in bleomycin-induced pulmonary fibrosis. Physiol Res 67:S185–S197

    Article  CAS  PubMed  Google Scholar 

  63. Manitsopoulos N, Nikitopoulou I, Maniatis NA, Magkou C, Kotanidou A, Orfanos SE (2018) Highly selective endothelin-1 receptor a inhibition prevents bleomycin-induced pulmonary inflammation and fibrosis in mice. Respiration 95:122–136

    Article  CAS  PubMed  Google Scholar 

  64. Hocher B, Thöne-Reineke C, Rohmeiss P, Schmager F, Slowinski T, Burst V et al (1997) Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Investig 99:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spires D, Poudel B, Shields CA, Pennington A, Fizer B, Taylor L et al (2018) Prevention of the progression of renal injury in diabetic rodent models with pre-existing renal disease with chronic endothelin a receptor blockade. Am J Physiol Ren Physiol 315(4):F977–F985

    Article  CAS  Google Scholar 

  66. Arfian N, Suzuki Y, Hartopo AB, Anggorowati N, Nugrahaningsih DAA, Emoto N (2020) Endothelin converting enzyme-1 (ece-1) deletion in association with endothelin-1 downregulation ameliorates kidney fibrosis in mice. Life Sci 258:118223

    Article  CAS  PubMed  Google Scholar 

  67. Neuhofer W, Pittrow D (2006) Role of endothelin and endothelin receptor antagonists in renal disease. Eur J Clin Invest 36(Suppl 3):78–88

    Article  CAS  PubMed  Google Scholar 

  68. Aktar MK, Kido-Nakahara M, Furue M, Nakahara T (2015) Mutual upregulation of endothelin-1 and il-25 in atopic dermatitis. Allergy 70:846–854

    Article  CAS  PubMed  Google Scholar 

  69. Nakahara T, Kido-Nakahara M, Ohno F, Ulzii D, Chiba T, Tsuji G et al (2018) The pruritogenic mediator endothelin-1 shifts the dendritic cell-t-cell response toward th17/th1 polarization. Allergy 73:511–515

    Article  CAS  PubMed  Google Scholar 

  70. Oh MH, Oh SY, Yu J, Myers AC, Leonard WJ, Liu YJ et al (2011) Il-13 induces skin fibrosis in atopic dermatitis by thymic stromal lymphopoietin. J Immunol 186:7232–7242

    Article  CAS  PubMed  Google Scholar 

  71. Tsybikov NN, Petrisheva IV, Kuznik BI, Magen E (eds) (2015) Plasma endothelin-1 levels during exacerbation of atopic dermatitis. In: Allergy Asthma Proc. OceanSide Publications, Inc

  72. Zachariae H, Heickendorff L, Bjerring P (1996) Plasma endothelin in psoriasis: possible relations to therapy and toxicity. Acta Derm Venereol 76:442–443

    CAS  PubMed  Google Scholar 

  73. Trevisan G, Stinco G, Giansante C, Fiotti N, Vidimari P, Kokelj F (1994) Psoriasis and endothelins. Acta Derm Venereol Suppl (Stockh) 186:139–140

    CAS  Google Scholar 

  74. Cecchi R, Giomi A, Ciuti M, Gironi A, Seghieri G (1994) Increased levels of plasma endothelin-1 in patients with psoriasis. Clin Chim Acta 226:113–115

    Article  CAS  PubMed  Google Scholar 

  75. Borska L, Andrys C, Chmelarova M, Kovarikova H, Krejsek J, Hamakova K et al (2017) Roles of mir-31 and endothelin-1 in psoriasis vulgaris: pathophysiological functions and potential biomarkers. Physiol Res 66:987–992

    Article  CAS  PubMed  Google Scholar 

  76. Bonifati C, Mussi A, Carducci M, Pittarello A, D’Auria L, Venuti A et al (1998) Endothelin-1 levels are increased in sera and lesional skin extracts of psoriatic patients and correlate with disease severity. Acta Derm Venereol 78:22–26

    Article  CAS  PubMed  Google Scholar 

  77. Ahn R, Yan D, Chang HW, Lee K, Bhattarai S, Huang ZM et al (2018) Rna-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways. Sci Rep 8:11368

    Article  PubMed  PubMed Central  Google Scholar 

  78. Segre JA (2006) Epidermal barrier formation and recovery in skin disorders. J Clin Invest 116:1150–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yohn JJ, Smith C, Stevens T, Morelli JG, Shurnas LR, Walchak SJ et al (1994) Autoregulation of endothelin-1 secretion by cultured human keratinocytes via the endothelin b receptor. Biochim Biophys Acta 1224:454–458

    Article  PubMed  Google Scholar 

  80. Imokawa G, Yada Y, Miyagishi M (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267:24675–24680

    Article  CAS  PubMed  Google Scholar 

  81. Imokawa G, Miyagishi M, Yada Y (1995) Endothelin-1 as a new melanogen—coordinated expression of its gene and the tyrosinase gene in uvb-exposed human epidermis. J Invest Dermatol 105:32–37

    Article  CAS  PubMed  Google Scholar 

  82. Pernet I, Mayoux C, Trompezinski S, Schmitt D, Viac J (2000) Modulation of endothelin-1 in normal human keratinocytes by uva1/b radiations, prostaglandin e2 and peptidase inhibitors. Exp Dermatol 9:401–406

    Article  CAS  PubMed  Google Scholar 

  83. Tsuboi R, Sato C, Oshita Y, Hama H, Sakurai T, Goto K et al (1995) Ultraviolet b irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes. FEBS Lett 371:188–190

    Article  CAS  PubMed  Google Scholar 

  84. Sah SK, Kim T (2013) Novel isonahocol e3 exhibits anti-inflammatory and anti-angiogenic effect in endothelin-1-stimulated human keratinocytes. J Invest Dermatol 133:S35-S

    Google Scholar 

  85. Giaid A, Michel RP, Stewart DJ, Sheppard M, Corrin B, Hamid Q (1993) Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet 341:1550–1554

    Article  CAS  PubMed  Google Scholar 

  86. Jain R, Shaul PW, Borok Z, Willis BC (2007) Endothelin-1 induces alveolar epithelial–mesenchymal transition through endothelin type a receptor–mediated production of tgf-β1. Am J Respir Cell Mol Biol 37:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang L, Li H, Gou R, Cheng G, Guo Y, Fang Y et al (2014) Endothelin-1 mediated high glucose-induced epithelial-mesenchymal transition in renal tubular cells. Diabetes Res Clin Pract 104:176–182

    Article  CAS  PubMed  Google Scholar 

  88. Seccia TM, Caroccia B, Gioco F, Piazza M, Buccella V, Guidolin D et al (2016) Endothelin-1 drives epithelial-mesenchymal transition in hypertensive nephroangiosclerosis. J Am Heart Assoc 5:e003888

    Article  PubMed  PubMed Central  Google Scholar 

  89. Qin D, Zhang L, Jin X, Zhao Z, Jiang Y, Meng Z (2017) Effect of endothelin-1 on proliferation, migration and fibrogenic gene expression in human rpe cells. Peptides 94:43–48

    Article  CAS  PubMed  Google Scholar 

  90. Hickey KA, Rubanyi G, Paul RJ, Highsmith RF (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol 248:C550–C556

    Article  CAS  PubMed  Google Scholar 

  91. Kiya K, Kubo T, Kawai K, Matsuzaki S, Maeda D, Fujiwara T et al (2017) Endothelial cell-derived endothelin-1 is involved in abnormal scar formation by dermal fibroblasts through rhoa/rho-kinase pathway. Exp Dermatol 26:705–712

    Article  CAS  PubMed  Google Scholar 

  92. Wermuth PJ, Li Z, Mendoza FA, Jimenez SA (2016) Stimulation of transforming growth factor-beta1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (et-1): a novel profibrotic effect of et-1. PLoS ONE 11:e0161988

    Article  PubMed  PubMed Central  Google Scholar 

  93. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    Article  CAS  PubMed  Google Scholar 

  94. Zanatta CM, Veronese FV, Loreto MD, Sortica DA, Carpio VN, Eldeweiss MIA et al (2012) Endothelin-1 and endothelin a receptor immunoreactivity is increased in patients with diabetic nephropathy. Ren Fail 34:308–315

    Article  CAS  PubMed  Google Scholar 

  95. Gallelli L, Pelaia G, D’Agostino B, Cuda G, Vatrella A, Fratto D et al (2005) Endothelin-1 induces proliferation of human lung fibroblasts and il-11 secretion through an eta receptor-dependent activation of map kinases. J Cell Biochem 96:858–868

    Article  CAS  PubMed  Google Scholar 

  96. Recchia AG, Filice E, Pellegrino D, Dobrina A, Cerra MC, Maggiolini M (2009) Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes. J Mol Cell Cardiol 46:352–359

    Article  CAS  PubMed  Google Scholar 

  97. Shi-wen X, Howat SL, Renzoni EA, Holmes A, Pearson JD, Dashwood MR et al (2004) Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through mek/erk. J Biol Chem 279:23098–23103

    Article  Google Scholar 

  98. Horowitz JC, Ajayi IO, Kulasekaran P, Rogers DS, White JB, Townsend SK et al (2012) Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. Int J Biochem Cell Biol 44:158–169

    Article  CAS  PubMed  Google Scholar 

  99. Shi-wen X, Kennedy L, Renzoni EA, Bou-Gharios G, du Bois RM, Black CM et al (2007) Endothelin is a downstream mediator of profibrotic responses to transforming growth factor β in human lung fibroblasts. Arthritis Rheum 56:4189–4194

    Article  PubMed  Google Scholar 

  100. Ruest LB, Ranjbaran H, Tong EJ, Svoboda KK, Feng JQ (2016) Activation of receptor activator of nuclear factor-kappab ligand and matrix metalloproteinase production in periodontal fibroblasts by endothelin signaling. J Periodontol 87:e1-8

    Article  CAS  PubMed  Google Scholar 

  101. Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G et al (2004) Endothelin-1 promotes myofibroblast induction through the eta receptor via a rac/phosphoinositide 3-kinase/akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 15:2707–2719

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shi-Wen X, Denton CP, Dashwood MR, Holmes AM, Bou-Gharios G, Pearson JD et al (2001) Fibroblast matrix gene expression and connective tissue remodeling: Role of endothelin-1. J Invest Dermatol 116:417–425

    Article  CAS  PubMed  Google Scholar 

  103. Jing J, Dou TT, Yang JQ, Chen XB, Cao HL, Min M et al (2015) Role of endothelin-1 in the skin fibrosis of systemic sclerosis. Eur Cytokine Netw 26:10–14

    Article  CAS  PubMed  Google Scholar 

  104. Duan Z, Jia Y, Zhang J, Long L, Tang L (2018) Endothelin-1-induced expression of alpha-smooth muscle actin in human myometrial fibroblasts. J Obstet Gynaecol Res 44:540–546

    Article  CAS  PubMed  Google Scholar 

  105. Lyu L, Wang H, Li B, Qin Q, Qi L, Nagarkatti M et al (2015) A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol 89:268–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kernochan LE, Tran BN, Tangkijvanich P, Melton AC, Tam SP, Yee HF Jr (2002) Endothelin-1 stimulates human colonic myofibroblast contraction and migration. Gut 50:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Knowles JP, Shi-Wen X, Haque SU, Bhalla A, Dashwood MR, Yang S et al (2012) Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int J Cancer 130:1264–1272

    Article  CAS  PubMed  Google Scholar 

  108. Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT (1993) Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27:2130–2134

    Article  CAS  PubMed  Google Scholar 

  109. Peacock AJ, Dawes KE, Shock A, Gray AJ, Reeves JT, Laurent GJ (1992) Endothelin-1 and endothelin-3 induce chemotaxis and replication of pulmonary artery fibroblasts. Am J Respir Cell Mol Biol 7:492–499

    Article  CAS  PubMed  Google Scholar 

  110. Shamraj OI, Lingrel JB (1994) A putative fourth Na+, K(+)-atpase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci 91:12952–12956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kataoka Y (2014) Thymus and activation-regulated chemokine as a clinical biomarker in atopic dermatitis. J Dermatol 41:221–229

    Article  CAS  PubMed  Google Scholar 

  112. Morishima Y, Kawashima H, Takekuma K, Hoshika A (2010) Changes in serum lactate dehydrogenase activity in children with atopic dermatitis. Pediatr Int 52:171–174

    Article  CAS  PubMed  Google Scholar 

  113. Mukai H, Noguchi T, Kamimura K, Nishioka K, Nishiyama S (1990) Significance of elevated serum ldh (lactate dehydrogenase) activity in atopic dermatitis. J Dermatol 17:477–481

    Article  CAS  PubMed  Google Scholar 

  114. Kato A, Kamata M, Ito M, Uchida H, Nagata M, Fukaya S et al (2020) Higher baseline serum lactate dehydrogenase level is associated with poor effectiveness of dupilumab in the long term in patients with atopic dermatitis. J Dermatol 47:1013–1019

    Article  CAS  PubMed  Google Scholar 

  115. Kang YP, Lee SB, Lee JM, Kim HM, Hong JY, Lee WJ et al (2016) Metabolic profiling regarding pathogenesis of idiopathic pulmonary fibrosis. J Proteome Res 15:1717–1724

    Article  CAS  PubMed  Google Scholar 

  116. Zhao YD, Yin L, Archer S, Lu C, Zhao G, Yao Y et al (2017) Metabolic heterogeneity of idiopathic pulmonary fibrosis: A metabolomic study. BMJ Open Respir Res 4:e000183

    Article  PubMed  PubMed Central  Google Scholar 

  117. Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM et al (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med 192:1462–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao LC, Dong MJ, Liao SX, Du Y, Zhou Q, Zheng H et al (2016) Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology. Sci Rep 6:27194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T et al (2021) Lung myofibroblast promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol 64:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128:702–709

    Article  CAS  PubMed  Google Scholar 

  121. Ghani QP, Wagner S, Becker HD, Hunt TK, Hussain MZ (2004) Regulatory role of lactate in wound repair. In: Methods enzymol. Elsevier, pp 565–575

  122. Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R et al (2012) Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via ph-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med 186:740–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kottmann RM, Trawick E, Judge JL, Wahl LA, Epa AP, Owens KM et al (2015) Pharmacologic inhibition of lactate production prevents myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 309:L1305–L1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Judge JL, Owens KM, Pollock SJ, Woeller CF, Thatcher TH, Williams JP et al (2015) Ionizing radiation induces myofibroblast differentiation via lactate dehydrogenase. Am J Physiol Lung Cell Mol Physiol 309:L879–L887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Judge JL, Lacy SH, Ku WY, Owens KM, Hernady E, Thatcher TH et al (2017) The lactate dehydrogenase inhibitor gossypol inhibits radiation-induced pulmonary fibrosis. Radiat Res 188:35–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Judge JL, Nagel DJ, Owens KM, Rackow A, Phipps RP, Sime PJ et al (2018) Prevention and treatment of bleomycin-induced pulmonary fibrosis with the lactate dehydrogenase inhibitor gossypol. PLoS ONE 13:e0197936

    Article  PubMed  PubMed Central  Google Scholar 

  127. Coleman DT, Gray AL, Stephens CA, Scott ML, Cardelli JA (2016) Repurposed drug screen identifies cardiac glycosides as inhibitors of tgf-β-induced cancer-associated fibroblast differentiation. Oncotarget 7:32200

    Article  PubMed  PubMed Central  Google Scholar 

  128. La J, Reed E, Chan L, Smolyaninova LV, Akomova OA, Mutlu GM et al (2016) Downregulation of tgf-β receptor-2 expression and signaling through inhibition of na/k-atpase. PLoS ONE 11:e0168363

    Article  PubMed  PubMed Central  Google Scholar 

  129. La J, Reed EB, Koltsova S, Akimova O, Hamanaka RB, Mutlu GM et al (2016) Regulation of myofibroblast differentiation by cardiac glycosides. Am J Physiol Lung Cell Mol Physiol 310:L815–L823

    Article  PubMed  PubMed Central  Google Scholar 

  130. Akimova OA, Tverskoi AM, Smolyaninova LV, Mongin AA, Lopina OD, La J et al (2015) Critical role of the alpha1-Na(+), k(+)-atpase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis 20:1200–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Orlov SN, La J, Smolyaninova LV, Dulin NO (2019) Na+, K+-atpase as a target for treatment of tissue fibrosis. Curr Med Chem 26:564–575

    Article  CAS  PubMed  Google Scholar 

  132. Liu L, Wu J, Kennedy DJ (2016) Regulation of cardiac remodeling by cardiac Na(+)/K(+)-atpase isoforms. Front Physiol 7:382

    Article  PubMed  PubMed Central  Google Scholar 

  133. St Laurent G III, Seilheimer B, Tackett M, Zhou J, Shtokalo D, Vyatkin Y et al (2017) Deep sequencing transcriptome analysis of murine wound healing: effects of a multicomponent, multitarget natural product therapy-tr14. Front Mol Biosci 4:57

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hou C, Dolivo D, Rodrigues A, Li Y, Leung K, Galiano R et al (2021) Knockout of sodium channel nax delays re-epithelializathion of splinted murine excisional wounds. Wound Repair Regen 29:306–315

    Article  PubMed  Google Scholar 

  135. Galiano RD, Jt M, Dobryansky M, Levine JP, Gurtner GC (2004) Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 12:485–492

    Article  PubMed  Google Scholar 

  136. Sakuta H, Lin CH, Hiyama TY, Matsuda T, Yamaguchi K, Shigenobu S et al (2020) Slc9a4 in the organum vasculosum of the lamina terminalis is a [Na(+)] sensor for the control of water intake. Pflugers Arch 472:609–624

    Article  CAS  PubMed  Google Scholar 

  137. Platoshyn O, Remillard CV, Fantozzi I, Sison T, Yuan JX (2005) Identification of functional voltage-gated na(+) channels in cultured human pulmonary artery smooth muscle cells. Pflugers Arch 451:380–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hagiwara T, Yoshida S (2016) Contribution of concentration-sensitive sodium channels to the absorption of alveolar fluid in mice. Respir Physiol Neurobiol 231:45–54

    Article  CAS  PubMed  Google Scholar 

  139. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S et al (2019) Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 199:1517–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A et al (2018) Transcriptional and epigenomic landscapes of cns and non-cns vascular endothelial cells. Elife 7:e36187

    Article  PubMed  PubMed Central  Google Scholar 

  141. Barry DM, McMillan EA, Kunar B, Lis R, Zhang T, Lu T et al (2019) Molecular determinants of nephron vascular specialization in the kidney. Nat Commun 10:5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Watanabe E, Hiyama TY, Kodama R, Noda M (2002) Nax sodium channel is expressed in non-myelinating schwann cells and alveolar type ii cells in mice. Neurosci Lett 330:109–113

    Article  CAS  PubMed  Google Scholar 

  143. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S et al (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582:675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schulze-Bahr E, Eckardt L, Breithardt G, Seidl K, Wichter T, Wolpert C et al (2003) Sodium channel gene (scn5a) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat 21:651–652

    Article  PubMed  Google Scholar 

  145. Gaborit N, Wichter T, Varro A, Szuts V, Lamirault G, Eckardt L et al (2009) Transcriptional profiling of ion channel genes in brugada syndrome and other right ventricular arrhythmogenic diseases. Eur Heart J 30:487–496

    Article  CAS  PubMed  Google Scholar 

  146. Bogdanovic E, Potet F, Marszalec W, Iyer H, Galiano R, Hong SJ et al (2020) The sodium channel Nax: possible player in excitation-contraction coupling. IUBMB Life 72:601–606

    Article  CAS  PubMed  Google Scholar 

  147. King JH, Wickramarachchi C, Kua K, Du Y, Jeevaratnam K, Matthews HR et al (2013) Loss of Nav1.5 expression and function in murine atria containing the ryr2-p2328s gain-of-function mutation. Cardiovasc Res 99:751–759

    Article  CAS  PubMed  Google Scholar 

  148. Jeevaratnam K, Tee SP, Zhang Y, Rewbury R, Guzadhur L, Duehmke R et al (2011) Delayed conduction and its implications in murine scn5a+/− hearts: independent and interacting effects of genotype, age, and sex. Pflug Arch Eur J Phy 461:29–44

    Article  CAS  Google Scholar 

  149. Poulsen PC, Schrolkamp M, Bagwan N, Leurs U, Humphries ESA, Bomholzt SH et al (2020) Quantitative proteomics characterization of acutely isolated primary adult rat cardiomyocytes and fibroblasts. J Mol Cell Cardiol 143:63–70

    Article  CAS  PubMed  Google Scholar 

  150. Lee MO, Jung KB, Jo SJ, Hyun SA, Moon KS, Seo JW et al (2019) Modelling cardiac fibrosis using three-dimensional cardiac microtissues derived from human embryonic stem cells. J Biol Eng 13:15

    Article  PubMed  PubMed Central  Google Scholar 

  151. Simon-Chica A, Fernández MC, Wülfers EM, Lother A, Hilgendorf I, Seemann G et al. (2021) Novel insights into the electrophysiology of murine cardiac macrophages: relevance of voltage-gated potassium channels. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab126

  152. Zhang X, Lin P, Zhu ZH, Long H, Wen J, Yang H et al (2009) Expression profiles of early esophageal squamous cell carcinoma by cdna microarray. Cancer Genet Cytogenet 194:23–29

    Article  CAS  PubMed  Google Scholar 

  153. Bao LM, Zhang Y, Wang J, Wang HY, Dong NA, Su XQ et al (2016) Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol 32:419–435

    Article  CAS  PubMed  Google Scholar 

  154. Ko JH, Ko EA, Gu W, Lim I, Bang H, Zhou T (2013) Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol Cancer 12:106

    Article  PubMed  PubMed Central  Google Scholar 

  155. Liu Y, Li X, Chang R, Chen Y, Gao Y (2020) PLEK2 and SCN7A: novel biomarkers of non-small cell lung cancer. https://doi.org/10.21203/rs.3.rs-16005/v1

  156. Zhang KX, Zhu DL, He X, Zhang Y, Zhang H, Zhao R et al (2003) association of single nucleotide polymorphism in human scn7a gene with essential hypertension in chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 20:463–467

    CAS  PubMed  Google Scholar 

  157. Zhang B, Li M, Wang LJ, Li C, Lou YQ, Liu JL et al (2015) The association between the polymorphisms in a sodium channel gene scn7a and essential hypertension: a case-control study in the northern han chinese. Ann Hum Genet 79:28–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of those whose fruitful research has contributed in any way to the elucidation of Nax and its activity. Figures were created with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok Jong Hong or Thomas Mustoe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolivo, D., Rodrigues, A., Sun, L. et al. The Nax (SCN7A) channel: an atypical regulator of tissue homeostasis and disease. Cell. Mol. Life Sci. 78, 5469–5488 (2021). https://doi.org/10.1007/s00018-021-03854-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03854-2

Keywords

Navigation