Skip to main content

Advertisement

Log in

Omeprazole enhances the colonic expression of the Mg2+ transporter TRPM6

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Proton pump inhibitors (PPIs) are potent blockers of gastric acid secretion, used by millions of patients suffering from gastric acid-related complaints. Although PPIs have an excellent safety profile, an increasing number of case reports describe patients with severe hypomagnesemia due to long-term PPI use. As there is no evidence of a renal Mg2+ leak, PPI-induced hypomagnesemia is hypothesized to result from intestinal malabsorption of Mg2+. The aim of this study was to investigate the effect of PPIs on Mg2+ homeostasis in an in vivo mouse model. To this end, C57BL/6J mice were treated with omeprazole, under normal and low dietary Mg2+ availability. Omeprazole did not induce changes in serum Mg2+ levels (1.48 ± 0.05 and 1.54 ± 0.05 mmol/L in omeprazole-treated and control mice, respectively), urinary Mg2+ excretion (35 ± 3 μmol/24 h and 30 ± 4 μmol/24 h in omeprazole-treated and control mice, respectively), or fecal Mg2+ excretion (84 ± 4 μmol/24 h and 76 ± 4 μmol/24 h in omeprazole-treated and control mice, respectively) under any of the tested experimental conditions. However, omeprazole treatment did increase the mRNA expression level of the transient receptor potential melastatin 6 (TRPM6), the predominant intestinal Mg2+ channel, in the colon (167 ± 15 and 100 ± 7 % in omeprazole-treated and control mice, respectively, P < 0.05). In addition, the expression of the colonic H+,K+-ATPase (cHK-α), a homolog of the gastric H+,K+-ATPase that is the primary target of omeprazole, was also significantly increased (354 ± 43 and 100 ± 24 % in omeprazole-treated and control mice, respectively, P < 0.05). The expression levels of other magnesiotropic genes remained unchanged. Based on these findings, we hypothesize that omeprazole inhibits cHK-α activity, resulting in reduced extrusion of protons into the large intestine. Since TRPM6-mediated Mg2+ absorption is stimulated by extracellular protons, this would diminish the rate of intestinal Mg2+ absorption. The increase of TRPM6 expression in the colon may compensate for the reduced TRPM6 currents, thereby normalizing intestinal Mg2+ absorption during omeprazole treatment in C57BL/6J mice, explaining unchanged serum, urine, and fecal Mg2+ levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander RT, Hoenderop JG, Bindels RJ (2008) Molecular determinants of magnesium homeostasis: insights from human disease. J Am Soc Nephrol 19:1451–1458

    Article  CAS  PubMed  Google Scholar 

  2. Bai JP, Hausman E, Lionberger R, Zhang X (2012) Modeling and simulation of the effect of proton pump inhibitors on magnesium homeostasis. 1. Oral absorption of magnesium. Mol Pharm 9:3495–3505

    Article  CAS  PubMed  Google Scholar 

  3. Broeren MA, Geerdink EA, Vader HL, van den Wall Bake AW (2009) Hypomagnesemia induced by several proton-pump inhibitors. Ann Intern Med 151:755–756

    Article  PubMed  Google Scholar 

  4. Coudray C, Demigne C, Rayssiguier Y (2003) Effects of dietary fibers on magnesium absorption in animals and humans. J Nutr 133:1–4

    CAS  PubMed  Google Scholar 

  5. Cougnon M, Planelles G, Crowson MS, Shull GE, Rossier BC, Jaisser F (1996) The rat distal colon P-ATPase alpha subunit encodes a ouabain-sensitive H+, K+-ATPase. J Biol Chem 271:7277–7280

    Article  CAS  PubMed  Google Scholar 

  6. Cundy T, Dissanayake A (2008) Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin Endocrinol 69:338–341

    Article  CAS  Google Scholar 

  7. Cundy T, Mackay J (2011) Proton pump inhibitors and severe hypomagnesaemia. Curr Opin Gastroenterol 27:180–185

    Article  CAS  PubMed  Google Scholar 

  8. Danziger J, William JH, Scott DJ, Lee J, Lehman LW, Mark RG, Howell MD, Celi LA, Mukamal KJ (2013) Proton-pump inhibitor use is associated with low serum magnesium concentrations. Kidney Int 83:692–699

    Article  CAS  PubMed  Google Scholar 

  9. Doornebal J, Bijlsma R, Brouwer RM (2009) An unknown but potentially serious side effect of proton pump inhibitors: hypomagnesaemia. Ned Tijdschr Geneeskd 153:A711

    PubMed  Google Scholar 

  10. Epstein M, McGrath S, Law F (2006) Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med 355:1834–1836

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Fernandez FJ, Sesma P, Cainzos-Romero T, Ferreira-Gonzalez L (2010) Intermittent use of pantoprazole and famotidine in severe hypomagnesaemia due to omeprazole. Neth J Med 68:329–330

    CAS  PubMed  Google Scholar 

  12. Fernandez-Fernandez FJ, Sesma P, Cainzos-Romero T, Ferreira L (2011) Hypomagnesemia related to the use of omeprazole with negative result for mutation in the TRPM6 gene. Med Clin (Barc) 137:188–189

    Article  Google Scholar 

  13. Furlanetto TW, Faulhaber GA (2011) Hypomagnesemia and proton pump inhibitors: below the tip of the iceberg. Arch Intern Med 171:1391–1392

    Article  PubMed  Google Scholar 

  14. Gau JT, Yang YX, Chen R, Kao TC (2012) Uses of proton pump inhibitors and hypomagnesemia. Pharmacoepidemiol Drug Saf. doi:10.1002/pds.3224, Article first published online: 15 FEB 2012

    PubMed  Google Scholar 

  15. Groenestege WM, Hoenderop JG, van den Heuvel L, Knoers N, Bindels RJ (2006) The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol 17:1035–1043

    Article  CAS  PubMed  Google Scholar 

  16. Hmu C, Moulik P, Macleod A (2009) Severe hypomagnesaemia due to lansoprazole. BMJ Case Rep (in press), published online 17 December 2009

  17. Hoorn EJ, van der Hoek J, de Man RA, Kuipers EJ, Bolwerk C, Zietse R (2010) A case series of proton pump inhibitor-induced hypomagnesemia. Am J Kidney Dis 56:112–116

    Article  PubMed  Google Scholar 

  18. Kuipers MT, Thang HD, Arntzenius AB (2009) Hypomagnesaemia due to use of proton pump inhibitors—a review. Neth J Med 67:169–172

    CAS  PubMed  Google Scholar 

  19. Lameris AL, Monnens LA, Bindels RJ, Hoenderop JG (2012) Drug-induced alterations in Mg2+ homoeostasis. Clin Sci (Lond) 123:1–14

    Article  CAS  Google Scholar 

  20. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mackay JD, Bladon PT (2010) Hypomagnesaemia due to proton-pump inhibitor therapy: a clinical case series. Qjm-an Int J Med 103:387–395

    Article  CAS  Google Scholar 

  22. McKeage K, Blick SK, Croxtall JD, Lyseng-Williamson KA, Keating GM (2008) Esomeprazole: a review of its use in the management of gastric acid-related diseases in adults. Drugs 68:1571–1607

    Article  CAS  PubMed  Google Scholar 

  23. Nair AV, Hocher B, Verkaart S, van Zeeland F, Pfab T, Slowinski T, Chen YP, Schlingmann KP, Schaller A, Gallati S, Bindels RJ, Konrad M, Hoenderop JG (2012) Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci U S A 109:11324–11329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nakamura M, Matsui H, Serizawa H, Tsuchimoto K (2007) Lansoprazole novel effector sites revealed by autoradiography: relation to Helicobacter pylori, colon, esophagus and others. J Clin Biochem Nutr 41:154–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Olbe L, Carlsson E, Lindberg P (2003) A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov 2:132–139

    Article  CAS  PubMed  Google Scholar 

  26. Phillips DH, Hewer A, Osborne MR (1992) Interaction of omeprazole with DNA in rat tissues. Mutagenesis 7:277–283

    Article  CAS  PubMed  Google Scholar 

  27. Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24:230–235

    Article  CAS  PubMed  Google Scholar 

  28. Rechkemmer G, Frizzell RA, Halm DR (1996) Active potassium transport across guinea-pig distal colon: action of secretagogues. J Physiol-Lond 493:485–502

    CAS  PubMed  Google Scholar 

  29. Regolisti G, Cabassi A, Parenti E, Maggiore U, Fiaccadori E (2010) Severe hypomagnesemia during long-term treatment with a proton pump inhibitor. Am J Kidney Dis 56:168–174

    Article  PubMed  Google Scholar 

  30. Sachs G, Shin JM, Vagin O, Lambrecht N, Yakubov I, Munson K (2007) The gastric H, K ATPase as a drug target: past, present, and future. J Clin Gastroenterol 41(Suppl 2):S226–S242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T (2007) TRPM6 and TRPM7—gatekeepers of human magnesium metabolism. Biochim Biophys Acta-Mol Basis of Dis 1772:813–821

    Article  CAS  Google Scholar 

  32. Serfaty-Lacrosniere C, Wood RJ, Voytko D, Saltzman JR, Pedrosa M, Sepe TE, Russell RR (1995) Hypochlorhydria from short-term omeprazole treatment does not inhibit intestinal absorption of calcium, phosphorus, magnesium or zinc from food in humans. J Am Coll Nutr 14:364–368

    Article  CAS  PubMed  Google Scholar 

  33. Shao J, Gumz ML, Cain BD, Xia SL, Shull GE, van Driel IR, Wingo CS (2010) Pharmacological profiles of the murine gastric and colonic H, K-ATPases. Biochim Biophys Acta 1800:906–911

    Article  CAS  PubMed  Google Scholar 

  34. Sorensen MV, Matos JE, Praetorius HA, Leipziger J (2010) Colonic potassium handling. Pflugers Arch 459:645–656

    Article  CAS  PubMed  Google Scholar 

  35. Swarts HG, Koenderink JB, Willems PH, De Pont JJ (2007) The human non-gastric H, K-ATPase has a different cation specificity than the rat enzyme. Biochim Biophys Acta 1768:580–589

    Article  CAS  PubMed  Google Scholar 

  36. Tamura T, Sakaeda T, Kadoyama K, Okuno Y (2012) Omeprazole- and esomeprazole-associated hypomagnesaemia: data mining of the public version of the FDA Adverse Event Reporting System. Int J Med Sci 9:322–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Tari A, Wu V, Sumii M, Sachs G, Walsh JH (1991) Regulation of rat gastric H+/K+-ATPase alpha-subunit messenger-RNA by omeprazole. Biochim Biophys Acta 1129:49–56

    Article  CAS  PubMed  Google Scholar 

  38. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ (2009) EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 20:78–85

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe T, Suzuki T, Suzuki Y (1990) Ouabain-sensitive K+-ATPase in epithelial-cells from guinea-pig distal colon. Am J Physiol 258:G506–G511

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly thank Henk Arnts and Jeroen Mooren for technical assistance and Dr. Joost Drenth for critical reading of the manuscript. This study was supported by the Netherlands Organization for Scientific Research [TOP ZonMw 91208026, NWO-ALW 818.02.001], a EURYI award from the European Science Foundation and the Dutch Kidney Foundation [C08.2252] and EURenOmics funding from the European Union seventh Framework Programme (FP7/2007-2013, agreement n° 305608). Mark Hess was supported by a grant of the Institute for Genetic and Metabolic Disease (IGMD) of the Radboud University Nijmegen Medical Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. M. Bindels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lameris, A.L.L., Hess, M.W., van Kruijsbergen, I. et al. Omeprazole enhances the colonic expression of the Mg2+ transporter TRPM6. Pflugers Arch - Eur J Physiol 465, 1613–1620 (2013). https://doi.org/10.1007/s00424-013-1306-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1306-0

Keywords

Navigation