Skip to main content
Log in

Omeprazole suppressed plasma magnesium level and duodenal magnesium absorption in male Sprague-Dawley rats

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Hypomagnesemia is the most concerned side effect of proton pump inhibitors (PPIs) in chronic users. However, the mechanism of PPIs-induced systemic Mg2+ deficit is currently unclear. The present study aimed to elucidate the direct effect of short-term and long-term PPIs administrations on whole body Mg2+ homeostasis and duodenal Mg2+ absorption in rats. Mg2+ homeostasis was studied by determining the serum Mg2+ level, urine and fecal Mg2+ excretions, and bone and muscle Mg2+ contents. Duodenal Mg2+ absorption as well as paracellular charge selectivity were studied. Our result showed that gastric and duodenal pH markedly increased in omeprazole-treated rats. Omeprazole significantly suppressed plasma Mg2+ level, urinary Mg2+ excretion, and bone and muscle Mg2+ content. Thus, omeprazole induced systemic Mg2+ deficiency. By using Ussing chamber techniques, it was shown that omeprazole markedly suppressed duodenal Mg2+ channel-driven and Mg2+ channel-independent Mg2+ absorptions and cation selectivity. Inhibitors of mucosal HCO3 secretion significantly increased duodenal Mg2+ absorption in omeprazole-treated rats. We therefore hypothesized that secreted HCO3 in duodenum decreased luminal proton, this impeded duodenal Mg2+ absorption. Higher plasma total 25-OH vitamin D, diuresis, and urine PO4 3− were also demonstrated in hypomagnesemic rats. As a compensatory mechanism for systemic Mg2+ deficiency, the expressions of duodenal transient receptor potential melastatin 6 (TRPM6), cyclin M4 (CNNM4), claudin (Cldn)-2, Cldn-7, Cldn-12, and Cldn-15 proteins were enhanced in omeprazole-treated rats. Our findings support the potential role of duodenum on the regulation of Mg2+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abrahamsen B, Vestergaard P (2013) Proton pump inhibitor use and fracture risk—effect modification by histamine H1 receptor blockade. Observational case-control study using National Prescription Data. Bone 57(1):269–271

    Article  CAS  PubMed  Google Scholar 

  2. Agar M, Webster R, Lacey J, Donovan B, Walker A (2004) The use of subcutaneous omeprazole in the treatment of dyspepsia in palliative care patients. J Pain Symptom Manag 28(6):529–531

    Article  Google Scholar 

  3. Agus ZS (1999) Hypomagnesemia. J Am Soc Nephrol 10(7):1616–1622

    CAS  PubMed  Google Scholar 

  4. Allen A, Flemström G (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288(1):C1–C19

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Ghedalia D, Tagari H, Zamwel S, Bondi A (1975) Solubility and net exchange of calcium, magnesium and phosphorus in digesta flowing along the gut of the sheep. Br J Nutr 33(1):87–94

    Article  CAS  PubMed  Google Scholar 

  6. Cundy T, Dissanayake A (2008) Severe hypomagnesemia in long-term users of proton-pump inhibitors. Clin Endocrinol 69:338–341

    Article  CAS  Google Scholar 

  7. Cundy T, Mackay J (2011) Proton pump inhibitors and severe hypomagnesemia. Curr Opin Gastroenterol 27(2):180–185

    Article  CAS  PubMed  Google Scholar 

  8. Danziger J, William JH, Scott DJ, Lee J, Lehman LW, Mark RG, Howell MD, Celi LA, Mukamal KJ (2013) Proton-pump inhibitor use is associated with low serum magnesium concentrations. Kidney Int 83(4):692–699

    Article  CAS  PubMed  Google Scholar 

  9. de Baaij JHF, Hoenderop JG, Bindels RJM (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46

    Article  PubMed  Google Scholar 

  10. Doroszewicz J, Waldegger P, Jeck N, Seyberth H, Waldegger S (2005) pH dependence of extracellular calcium sensing receptor activity determined by a novel technique. Kidney Int 67(1):187–192

    Article  CAS  PubMed  Google Scholar 

  11. Epstein M, McGrath S, Law F (2006) Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med 355:1834–1836

    Article  CAS  PubMed  Google Scholar 

  12. Evenepoel P (2001) Alteration in digestion and absorption of nutrients during profound acid suppression. Best Pract Res Clin Gastroenterol 15:539–551

    Article  CAS  PubMed  Google Scholar 

  13. Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N (2006) Differential expression and subcellular localization of claudin-7, −8, −12, −13, and −15 along the mouse intestine. J Histochem Cytochem 54:933–944

    Article  CAS  PubMed  Google Scholar 

  14. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16(4):181–188

    Article  CAS  PubMed  Google Scholar 

  16. Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hess MW, de Baaij JHF, Gommers LMM, Hoenderop JGJ, Bindels RJM (2015) Dietary inulin fibers prevent proton-pump inhibitor (PPI)-induced hypocalcemia in mice. PLoS One 10(9):e0138881

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heijnen AM, Brink EJ, Lemmens AG, Beynen AC (1993) Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. Br J Nutr 70(3):747–756

    Article  CAS  PubMed  Google Scholar 

  19. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106(36):15350–15355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikari A, Okude C, Sawada H, Sasaki Y, Yamazaki Y, Sugatani J, Degawa M, Miwa M (2008) Activation of a polyvalent cation-sensing receptor decreases magnesium transport via claudin-16. Biochim Biophys Acta 1778(1):283–290

    Article  CAS  PubMed  Google Scholar 

  21. Im WB, Blakeman DP, Davis JP (1985) Irreversible inactivation of rat gastric (H+-K+)-ATPase in vivo by omeprazole. Biochem Biophys Res Commun 126(1):78–82

    Article  CAS  PubMed  Google Scholar 

  22. Kladnitsky O, Rozenfeld J, Azulay-Debby H, Efrati E, Zelikovic I (2015) The claudin-16 channel gene is transcriptionally inhibited by 1,25-dihydroxyvitamin D. Exp Physiol 100(1):79–94

    Article  CAS  PubMed  Google Scholar 

  23. Lameris ALL, Hess MW, van Kruijsbergen I, Hoenderop JGJ, Bindels RJM (2013) Omeprazole enhances the colonic expression of the Mg2+ transporter TRPM6. Pflugers Arch Eur J Physiol 465(11):1613–1620

    Article  CAS  Google Scholar 

  24. Lameris AL, Nevalainen PI, Reijnen D, Simons E, Eygensteyn J, Monnens L, Bindels RJ, Hoenderop JG (2015) Segmental transport of Ca2+ and Mg2+ along the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 308(3):G206–G216

    Article  CAS  PubMed  Google Scholar 

  25. Luk CP, Parsons R, Lee YP, Hughes JD (2013) Proton pump inhibitor-associated hypomagnesemia: what do FDA data tell us? Ann Pharmacother 47(6):773–780

    Article  PubMed  Google Scholar 

  26. Maggio M, Lauretani F, Ceda GP, De Vita F, Bondi G, Corsonello A, Cattabiani C, Lattanzio F, Ruggiero C, Nouvenne A, Meschi T, Bandinelli S, Ferrucci L (2013) Use of proton pump inhibitors is associated with lower trabecular bone density in older individuals. Bone 57(2):437–442

    Article  CAS  PubMed  Google Scholar 

  27. Mejia A, Kraft WK (2009) Acid peptic diseases: pharmacological approach to treatment. Expert Rev Clin Pharmacol 2(3):295–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mertz-Nielsen A, Hillingsø J, Bukhave K, Rask-Madsen J (1996) Omeprazole promotes proximal duodenal mucosal bicarbonate secretion in humans. Gut 38:6–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nugent SG, Kumar D, Rampton DS, Evans DF (2001) Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patterson Burdsall D, Flores HC, Krueger J, Garretson S, Gorbien MJ, Iacch A, Dobbs V, Homa T (2013) Use of proton pump inhibitors with lack of diagnostic indications in 22 Midwestern US skilled nursing facilities. J Am Med Dir Assoc 14(6):429–432

    Article  PubMed  Google Scholar 

  31. Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24(2):230–235

    Article  CAS  PubMed  Google Scholar 

  32. Quinn R (2005) Comparing rat’s to human ’s age: how old is my rat in people years? Nutrition 21(6):775–777

  33. Rondón LJ, Rayssiguier Y, Mazur A (2008) Dietary inulin in mice stimulates Mg2+ absorption and modulates TRPM6 and TRPM7 expression in large intestine and kidney. Magnes Res 21(4):224–231

    PubMed  Google Scholar 

  34. Rude RK, Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 15(12):710–716

    Article  CAS  PubMed  Google Scholar 

  35. Serfaty-Lacrosniere C, Wood RJ, Voytko D, Saltzman JR, Pedrosa M, Sepe TE, Russell RR (1995) Hypochlorhydria from short-term omeprazole treatment does not inhibit intestinal absorption of calcium, phosphorus, magnesium or zinc from food in humans. J Am Coll Nutr 14(4):364–368

    Article  CAS  PubMed  Google Scholar 

  36. Sengoku A, Inai T, Shibata Y (2008) Formation of aberrant TJ strands by overexpression of claudin-15 in MDCK II cells. Histochem Cell Biol 129(2):211–222

    Article  CAS  PubMed  Google Scholar 

  37. Serra S, Jani PA (2006) An approach to duodenal biopsies. J Clin Pathol 59(11):1133–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shabajee N, Lamb EJ, Sturgess I, Sumathipala RW (2008) Omeprazole and refractory hypomagnesemia. BMJ 337:a425

    Article  CAS  PubMed  Google Scholar 

  39. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  CAS  PubMed  Google Scholar 

  40. Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thongon N, Nakkrasae LI, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2008) Prolactin stimulates transepithelial calcium transport and modulates paracellular permselectivity in Caco-2 monolayer: mediation by PKC and ROCK pathways. Am J Physiol Cell Physiol 294:C1158–C1168

    Article  CAS  PubMed  Google Scholar 

  42. Thongon N, Krishnamra N (2011) Omeprazole decreases magnesium transport across Caco-2 monolayers. World J Gastroenterol 17(12):1574–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thongon N, Krishnamra N (2012) Apical acidity decreases inhibitory effect of omeprazole on Mg2+ absorption and claudin-7 and -12 expression in Caco-2 monolayers. Exp Mol Med 44(11):684–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thongon N, Ketkeaw P, Nuekchob C (2014) The roles of acid-sensing ion channel 1a and ovarian cancer G protein-coupled receptor 1 on passive Mg2+ transport across intestinal epithelium-like Caco-2 monolayers. J Physiol Sci 64(2):129–139

    Article  CAS  PubMed  Google Scholar 

  45. Vetter T, Lohse MJ (2002) Magnesium and the parathyroid. Curr Opin Nephrol Hypertens 11(4):403–410

    Article  PubMed  Google Scholar 

  46. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Article  CAS  PubMed  Google Scholar 

  47. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Barbuskaite D, Tozzi M, Giannuzzo A, Sørensen CE, Novak I (2015) Proton pump inhibitors inhibit pancreatic secretion: role of gastric and non-gastric H+/K+-ATPases. PLoS One 10(5):e0126432

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wolf FI, Trapani V, Simonacci M, Mastrototaro L, Cittadini A, Schweigel M (2010) Modulation of TRPM6 and Na+/Mg2+ exchange in mammary epithelial cells in response to variations of magnesium availability. J Cell Physiol 222(2):374–381

    Article  CAS  PubMed  Google Scholar 

  50. Xie J, Sun B, Du J, Yang W, Chen H-C, Overton JD, Runnels LW, Yue L (2011) Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Sci Rep 1:146

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamazaki D, Funato Y, Miura J, Sato S, Toyosawa S, Furutani K, Kurachi Y, Omori Y, Furukawa T, Tsuda T, Kuwabata S, Mizukami S, Kikuchi K, Miki H (2013) Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet 9(12):e1003983

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu AS, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278(19):17350–17359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the research grants from the Thailand Research Fund (RSA5680005), Burapha University through National Research Council of Thailand (33/2559), and the Faculty of Allied Health Sciences, Burapha University (AHS08/2558) to N. Thongon. We express our gratitude to Emeritus Prof. Dr. Prasert Sobhon of the Facuty of Allied Health Sciences, Burapha University, for his helpful suggestions and proofreading. We also thank Asst. Prof. Dr. Siriporn Chamniansawat, Ms. Maneerat Sakuntang, Ms. Sariya Ragsanit, Ms. Warintip Wetkama of the Facuty of Allied Health Sciences, Burapha University, Ms. Pornpun Seelaphong of the Microscopic Center, Faculty of Science, Burapha University, and Mr. Sakorn Praiwijarn and Ms. Dokerug Suwanchalong of Medical Laboratory Center, Burapha University Hospital, Burapha University for their excellent technical assistance.

Author contributions

Thongon N designed and performed experiments, analyzed and interpreted the results, wrote and edited the manuscript. Penguy J, Kulwong S, Khongmueang K, and Thongma M performed experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narongrit Thongon.

Ethics declarations

Conflict of interest statement

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongon, N., Penguy, J., Kulwong, S. et al. Omeprazole suppressed plasma magnesium level and duodenal magnesium absorption in male Sprague-Dawley rats. Pflugers Arch - Eur J Physiol 468, 1809–1821 (2016). https://doi.org/10.1007/s00424-016-1905-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1905-7

Keywords

Navigation