Skip to main content
Log in

Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The present study was designed to investigate whether advanced glycation end products (AGEs) would regulate KCa3.1 channels in cardiac fibroblasts and participate in cell proliferation. Cultured adult rat cardiac fibroblasts were employed to investigate the regulation of KCa3.1 channels by advanced glycation end products–bovine serum albumin (AGE–BSA) and the role of KCa3.1 channels in cell proliferation using approaches of molecular biology. KCa3.1 channel mRNA and protein levels were greatly enhanced in cardiac fibroblasts treated with 200 μg/ml AGE–BSA, and the effects were countered by anti-RAGE antibody or the ERK1/2 inhibitor PD98059, the p38-MAPK inhibitor SB203580, and the PI3K/Akt inhibitor LY294002. In addition, AGE–BSA stimulated cell proliferation and collagen production in cultured cardiac fibroblasts, and the effects were reversed by KCa3.1 blocker TRAM-34, anti-RAGE antibody, or signal inhibitors PD98059, SB203580, and LY294002. These results demonstrate for the first time that AGEs increase the expression of KCa3.1 channels in a RAGE-dependent manner and promote cardiac fibroblast proliferation and collagen production, which is mediated by phosphorylation of ERK1/2, p38-MAPK, and PI3K/Akt signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12

    Article  PubMed  CAS  Google Scholar 

  2. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    Article  PubMed  CAS  Google Scholar 

  3. Avendano G, Dharamsey S, Dasmahapatra A, Agarwal R, Reddi A, Regan T (1996) Left ventricular diastolic function in hypertension and role of plasma glucose and insulin: comparison with diabetic heart. Circulation 93:1396–1402

    Article  PubMed  Google Scholar 

  4. Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, Hanssen KF (1999) Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22:1186–1190

    Article  PubMed  CAS  Google Scholar 

  5. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792

    Article  PubMed  CAS  Google Scholar 

  6. Daoud S, Schinzel R, Neumann A, Loske C, Fraccarollo D, Diez C, Simm A (2001) Advanced glycation end products: activators of cardiac remodeling in primary fibroblasts from adult rat hearts. Mol Med 7:543–551

    PubMed  CAS  Google Scholar 

  7. Deng XL, Lau CP, Lai K, Cheung KF, Lau GK, Li GR (2007) Cell cycle-dependent expression of potassium channels and cell proliferation in rat mesenchymal stem cells from bone marrow. Cell Prolif 40:656–670

    Article  PubMed  CAS  Google Scholar 

  8. Diamant M, Lamb HJ, Groeneveld Y, Endert EL, Smit JW, Bax JJ, Romijn JA, de Roos A, Radder JK (2003) Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 42:328–335

    Article  PubMed  CAS  Google Scholar 

  9. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    Article  PubMed  CAS  Google Scholar 

  10. Fein FS, Sonnenblick EH (1985) Diabetic cardiomyopathy. Prog Cardiovasc Dis 27:255–270

    Article  PubMed  CAS  Google Scholar 

  11. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation: molecular mechanism and functional consequences. J Biol Chem 275:37137–37149

    Article  PubMed  CAS  Google Scholar 

  12. Grgic I, Kiss E, Kaistha BP, Busch C, Kloss M, Sautter J, Müller A, Kaistha A, Schmidt C, Raman G, Wulff H, Strutz F, Gröne HJ, Köhler R, Hoyer J (2009) Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci USA 106:14518–14523

    Article  PubMed  CAS  Google Scholar 

  13. Kass DA, Bronzwaer JGF, Paulus WJ (2004) What mechanisms underlie diastolic dysfunction in heart failure? Circ Res 94:1533–1542

    Article  PubMed  CAS  Google Scholar 

  14. Kumaran C, Shivakumar K (2002) Calcium- and superoxide anion-mediated mitogenic action of substance P on cardiac fibroblasts. Am J Physiol Heart Circ Physiol 282:H1855–H1862

    PubMed  CAS  Google Scholar 

  15. Li J, Liu NF, Wei Q (2008) Effect of rosiglitazone on cardiac fibroblast proliferation, nitric oxide production and connective tissue growth factor expression induced by advanced glycation end-products. J Int Med Res 36:329–335

    PubMed  CAS  Google Scholar 

  16. Martinez DA, Guhl DJ, Stanley WC, Vailas AC (2003) Extracellular matrix maturation in the left ventricle of normal and diabetic swine. Diabetes Res Clin Pract 59:1–9

    Article  PubMed  CAS  Google Scholar 

  17. Nyhlin N, Ando Y, Nagai R, Suhr O, El Sahly M, Terazaki H, Yamashita T, Ando M, Horiuchi S (2000) Advanced glycation end product in familial amyloidotic polyneuropathy. J Intern Med 247:485–492

    Article  PubMed  CAS  Google Scholar 

  18. Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164

    Article  PubMed  CAS  Google Scholar 

  19. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    Article  PubMed  CAS  Google Scholar 

  20. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  PubMed  CAS  Google Scholar 

  21. Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, Nesto RW, Wilson PWF, Vasan RS (2003) Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 107:448–454

    Article  PubMed  CAS  Google Scholar 

  22. Sun M, Yokoyama M, Ishiwata T, Asano G (1998) Deposition of advanced glycation end products (AGE) and expression of the receptor for AGE in cardiovascular tissue of the diabetic rat. Int J Exp Pathol 79:207–222

    PubMed  CAS  Google Scholar 

  23. Tang M, Zhong M, Shang Y, Lin H, Deng J, Jiang H, Lu H, Zhang Y, Zhang W (2008) Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cell Mol Life Sci 65:2924–2932

    Article  PubMed  CAS  Google Scholar 

  24. Tao R, Lau CP, Tse HF, Li GR (2008) Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol 295:C1409–C1416

    Article  PubMed  CAS  Google Scholar 

  25. Tharp DL, Wamhoff BR, Turk JR, Bowles DK (2006) Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291:H2493–H2503

    Article  PubMed  CAS  Google Scholar 

  26. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H (2008) The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118:3025–3037

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y, Zhang HT, Su XL, Deng XL, Yuan BX, Zhang W, Wang XF, Yang YB (2010) Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance. Curr Neurovas Res 7:75–84

    Article  CAS  Google Scholar 

  28. Weber KT (2004) Fibrosis in hypertensive heart disease: Focus on cardiac fibroblasts. J Hypertens 22:47–50

    Article  PubMed  CAS  Google Scholar 

  29. Yan SF, Berile GR, D’Agati V, Du Yan S, Ramasamy R, Schmidt AM (2007) The biology of RAGE and its ligands: Uncovering mechanisms at the heart of diabetes and its complications. Curr Diab Rep 2:146–153

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (grant number 81100231), the National Nature Science Foundation of Shaanxi Province (grant number 2011JQ4021), and China Postdoctoral Science Foundation (grant number 20100481335).

Conflict of interest

None declared.

Ethical standards

Experimental protocols were approved by the Institutional Animal Care and Use Committee of Xi’an Jiaotong University and conformed to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Ling Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, LM., Zhang, W., Wang, LP. et al. Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. Pflugers Arch - Eur J Physiol 464, 613–621 (2012). https://doi.org/10.1007/s00424-012-1165-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1165-0

Keywords

Navigation