Skip to main content
Log in

Cell type influences the molecular mechanisms involved in hormonal regulation of ERG K+ channels

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

While the thyrotropin-releasing hormone (TRH) effect of raising intracellular Ca2+ levels has been shown to rely on Gq/11 and PLC activation, the molecular mechanisms involved in the regulation of ERG K+ channels by TRH are still partially unknown. We have analysed the effects of βγ scavengers, Akt/PKB inactivation, and TRH receptor (TRH-R) overexpression on such regulation in native and heterologous expression cell systems. In native rat pituitary GH3 cells β-ARK/CT, Gαt, and phosducin significantly reduced TRH inhibition of rERG currents, whereas in HEK-H36/T1 cells permanently expressing TRH-R and hERG, neither of the βγ scavengers affected the TRH-induced shift in V 1/2. Use of specific siRNAs to knock Akt/PKB expression down abolished the TRH effect on HEK-H36/T1 cell hERG, but not on rERG from GH3 cells. Indeed, wortmannin or long insulin pretreatment also blocked TRH regulation of ERG currents in HEK-H36/T1 but not in GH3 cells. To determine whether these differences could be related to the amount of TRH-Rs in the cell, we studied the TRH concentration dependence of the Ca2+ and ERG responses in GH3 cells overexpressing the receptors. The data indicated that independent of the receptor number additional cellular factor(s) contribute differently to couple the TRH-R to hERG channel modulation in HEK-H36/T1 cells. We conclude that regulation of ERG currents by TRH and its receptor is transduced in GH3 and HEK-H36/T1 cell systems through common and different elements, and hence that the cell type influences the signalling pathways involved in the TRH-evoked responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso-Ron C, Barros F, Manso DG, Gómez-Varela D, Miranda P, Carretero L, Domínguez P, de la Peña P (2009) Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor. Pflügers Arch 457:1237–1252

    Article  PubMed  CAS  Google Scholar 

  2. Barros F, Delgado LM, Maciá C, de la Peña P (1991) Effects of hypothalamic peptides on electrical activity and membrane currents of “patch perforated” clamped GH3 anterior pituitary cells. FEBS Lett 279:33–37

    Article  PubMed  CAS  Google Scholar 

  3. Barros F, Delgado LM, del Camino D, de la Peña P (1992) Characteristics and modulation by thyrotropin-releasing hormone of an inwardly rectifying K+ current in patch-perforated GH3 anterior pituitary cells. Pflügers Arch 422:31–39

    Article  PubMed  CAS  Google Scholar 

  4. Barros F, Mieskes G, del Camino D, de la Peña P (1993) Protein phosphatase 2A reverses inhibition of inward rectifying K+ currents by thyrotropin-releasing hormone in GH3 pituitary cells. FEBS Lett 336:433–439

    Article  PubMed  CAS  Google Scholar 

  5. Barros F, Villalobos C, García-Sancho J, del Camino D, de la Peña P (1994) The role of the inwardly rectifying K+ current in resting potential and thyrotropin-releasing hormone-induced changes in cell excitability of GH3 rat anterior pituitary cells. Pflügers Arch 426:221–230

    Article  PubMed  CAS  Google Scholar 

  6. Barros F, del Camino D, Pardo LA, Palomero T, Giráldez T, de la Peña P (1997) Demonstration of an inwardly rectifying K+ current component modulated by thyrotropin-releasing hormone and caffeine in GH3 rat anterior pituitary cells. Pflügers Arch 435:119–129

    Article  PubMed  CAS  Google Scholar 

  7. Barros F, Gomez-Varela D, Viloria CG, Palomero T, Giráldez T, de la Peña P (1998) Modulation of human erg K+ channel gating by activation of a G protein-coupled receptor and protein kinase C. J Physiol 511:333–346

    Article  PubMed  CAS  Google Scholar 

  8. Bauer CK, Meyerhof W, Schwarz JR (1990) An inward-rectifying K+ current in clonal rat pituitary cells and its modulation by thyrotropin-releasing hormone. J Physiol 429:169–189

    PubMed  CAS  Google Scholar 

  9. Bauer CK, Davison I, Kubasov I, Schwarz JR, Mason WT (1994) Different G proteins are involved in the biphasic response of clonal rat pituitary cells to thyrotropin-releasing hormone. Pflügers Arch 428:17–25

    Article  PubMed  CAS  Google Scholar 

  10. Bauer CK, Engeland B, Wulfsen I, Ludwig J, Pongs O, Schwarz JR (1998) RERG is a molecular correlate of the inward-rectifying K current in clonal rat pituitary cells. Recept Channels 6:19–29

    PubMed  CAS  Google Scholar 

  11. Beitner-Johnson D, LeRoith D (1995) Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem 270:5187–5190

    Article  PubMed  CAS  Google Scholar 

  12. Blüml K, Schnepp W, Schröder S, Beyermann M, Macias M, Oschkinat H, Lohse MJ (1997) A small region in phosducin inhibits G-protein betagamma-subunit function. EMBO J 16:4908–4915

    Article  PubMed  Google Scholar 

  13. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  PubMed  CAS  Google Scholar 

  14. Castillo AI, Tolon RM, Aranda A (1998) Insulin-like growth factor-1 stimulates rat prolactin gene expression by a Ras, ETS and phosphatidylinositol 3-kinase dependent mechanism. Oncogene 16:1981–1991

    Article  PubMed  CAS  Google Scholar 

  15. Chabre O, Conklin BR, Brandon S, Bourne HR, Limbird LE (1994) Coupling of the α2A-adrenergic receptor to multiple G-proteins. A simple approach for estimating receptor-G-protein coupling efficiency in a transient expression system. J Biol Chem 267:5730–5734

    Google Scholar 

  16. Chiang C-E, Roden DM (2000) The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol 36:1–12

    Article  PubMed  CAS  Google Scholar 

  17. Cleland TA, Linster C (1999) Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Comput 11:1673–1690

    Article  PubMed  CAS  Google Scholar 

  18. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS (2007) Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits. J Physiol 581:479–493

    Article  PubMed  CAS  Google Scholar 

  19. de la Peña P, Delgado LM, del Camino D, Barros F (1992) Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem J 284:891–899

    PubMed  Google Scholar 

  20. de la Peña P, Delgado LM, del Camino D, Barros F (1992) Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J Biol Chem 267:25703–25708

    PubMed  Google Scholar 

  21. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27:6473–6488

    Article  PubMed  CAS  Google Scholar 

  22. Gershengorn MC, Osman R (1996) Molecular and cellular biology of thyrotropin-releasing hormone receptors. Physiol Rev 76:175–191

    PubMed  CAS  Google Scholar 

  23. Gómez-Varela D, Giráldez T, de la Peña P, Dupuy SG, García-Manso D, Barros F (2003) Protein kinase C is necessary for recovery from the thyrotropin-releasing hormone-induced rERG current reduction in GH3 rat anterior pituitary cells. J Physiol 547:913–929

    Article  PubMed  Google Scholar 

  24. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta 1697:3–16

    PubMed  CAS  Google Scholar 

  25. Hanyaloglu AC, Seeber RM, Kohout TA, Lefkowitz RJ, Eidne KA (2002) Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J Biol Chem 277:50422–50430

    Article  PubMed  CAS  Google Scholar 

  26. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  PubMed  CAS  Google Scholar 

  27. Hayakawa J, Ohmichi M, Tasaka K, Kanda Y, Adachi K, Nishio Y, Hisamoto K, Mabuchi S, Hinuma S, Murata Y (2002) Regulation of the PRL promoter by Akt through cAMP response element binding protein. Endocrinology 143:13–22

    Article  PubMed  CAS  Google Scholar 

  28. Hermans E (2003) Biochemical and parmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 99:25–44

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch E, Costa C, Ciraolo E (2007) Phosphoinositide 3-kinases as a common platform for multi-hormone signalling. J Endocrinol 194:243–256

    Article  PubMed  CAS  Google Scholar 

  30. Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580

    Article  PubMed  CAS  Google Scholar 

  31. Kenakin T (1997) Differences between natural and recombinant G protein-coupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol Sci 18:456–464

    PubMed  CAS  Google Scholar 

  32. Kiehn J (2000) Regulation of the cardiac repolarizing HERG potassium channel by protein kinase A. Trends Cardiovasc Med 10:205–209

    Article  PubMed  CAS  Google Scholar 

  33. Kirchberger NM, Wulfsen I, Schwarz JR, Bauer CK (2006) Effects of TRH on heteromeric rat erg1a/1b K+ channels are dominated by the rerg1b subunit. J Physiol 571:27–42

    Article  PubMed  CAS  Google Scholar 

  34. Koch WJ, Hawes BE, Inglese J, Luttrell LM, Lefkowitz RJ (1994) Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signalling. J Biol Chem 269:6193–6197

    PubMed  CAS  Google Scholar 

  35. Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE (1997) A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 272:21403–21407

    Article  PubMed  CAS  Google Scholar 

  36. Lee TW, Anderson LA, Eidne KA, Milligan G (1995) Comparison of the signalling properties of the long and short isoforms of the rat thyrotropin-releasing-hormone receptor following expression in Rat-1 fibroblasts. Biochem J 310:291–298

    PubMed  CAS  Google Scholar 

  37. Lohse MJ (2010) Dimerization in GPCR mobility and signalling. Curr Opin Pharmacol 10:53–58

    Article  PubMed  CAS  Google Scholar 

  38. MacNulty EE, McClue SJ, Carr IC, Jess T, Wakelam MJO, Milligan G (1992) α2-C10 adrenergic receptors expressed in Rat 1 fibroblasts car regulate both adenylylcyclase and phospholipase D-mediated hydrolysis of phosphatidylcholine by interacting with pertussis toxin-sensitive guanine nucleotide-binding proteins. J Biol Chem 267:2149–2156

    PubMed  CAS  Google Scholar 

  39. Matthews JC (1993) Fundamentals of receptor, enzyme and transport kinetics. CRC, FL, USA

    Google Scholar 

  40. Miranda P, Giráldez T, de la Peña P, Manso DG, Alonso-Ron C, Gómez-Varela D, Domínguez P, Barros F (2005) Specificity of TRH-R coupling to G-proteins for regulation of ERG K+ channels in GH3 rat anterior pituitary cells. J Physiol 566:717–736

    Article  PubMed  CAS  Google Scholar 

  41. Miranda P, Manso DG, Barros F, Carretero L, Hughes TE, Alonso-Ron C, Domínguez P, de la Peña P (2008) FRET with multiply labeled HERG K+ channels as a reporter of the in vivo coarse architecture of the cytoplasmic domains. Biochim Biophys Acta 1783:1681–1699

    Article  PubMed  CAS  Google Scholar 

  42. Nakanishi S, Catt KJ, Balla T (1995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci USA 92:5317–5321

    Article  PubMed  CAS  Google Scholar 

  43. Palomero T, Barros F, del Camino D, Viloria CG, de la Peña P (1998) A G protein βγ dimer-mediated pathway contributes to mitogen-activated protein kinase activation by thyrotropin-releasing hormone receptors in transfected COS-7 cells. Mol Pharmacol 53:613–622

    PubMed  CAS  Google Scholar 

  44. Park PS, Palczewski K (2005) Diversifying the repertoire of G protein-coupled receptors through oligomerization. Proc Natl Acad Sci USA 102:8793–8794

    Article  PubMed  CAS  Google Scholar 

  45. Pfleger KD, Kroeger KM, Eidne KA (2004) Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Semin Cell Dev Biol 15:269–280

    Article  PubMed  CAS  Google Scholar 

  46. Ramsdell JS, Tashjian AH Jr (1986) Thyrotropin-releasing hormone (TRH) elevation of inositol trisphosphate and cytosolic free calcium is dependent on receptor number. Evidence for multiple rapid interactions between TRH and its receptor. J Biol Chem 261:5301–5306

    PubMed  CAS  Google Scholar 

  47. Schäfer R, Wulfsen I, Behrens S, Weinsberg F, Bauer CK, Schwarz JR (1999) The erg-like current in rat lactotrophs. J Physiol 518:401–416

    Article  PubMed  Google Scholar 

  48. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK (2001) Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 532:143–163

    Article  PubMed  CAS  Google Scholar 

  49. Selkirk JV, Price GW, Nahorski SR, Challiss RA (2001) Cell type-specific differences in the coupling of recombinant mGlu1alpha receptors to endogenous G protein sub-populations. Neuropharmacology 40:645–656

    Article  PubMed  CAS  Google Scholar 

  50. Song GJ, Jones BW, Hinkle PM (2007) Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation. Proc Natl Acad Sci USA 104:18303–18308

    Article  PubMed  CAS  Google Scholar 

  51. Sun Y, Lu X, Gershengorn MC (2003) Thyrotropin-releasing hormone receptors – similarities and differences. J Mol Endocrinol 30:87–97

    Article  PubMed  CAS  Google Scholar 

  52. Thomas D, Zhang W, Wu K, Wimmer A-B, Gut B, Wendt-Nordahl G, Kathöfer S, Kreye VAW, Katus HA, Schoels KJ, Karle CA (2003) Regulation of HERG potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein. Cardiovasc Res 59:14–26

    Article  PubMed  CAS  Google Scholar 

  53. Thomas D, Kiehn J, Katus HA, Karle CA (2004) Adrenergic regulation of the rapid component of the cardiac delayed rectifier potassium current, IKr, and the underlying hERG ion channel. Basic Res Cardiol 99:279–287

    Article  PubMed  CAS  Google Scholar 

  54. Vacher H, Trimmer JS (2011) Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch 462:631–643

    Article  PubMed  CAS  Google Scholar 

  55. Wanke E, Restano-Cassulini R (2006) Toxins interacting with ether-a-go-go-related gene voltage-dependent potassium channels. Toxicon 49:239–248

    Article  PubMed  Google Scholar 

  56. Weinsberg F, Bauer CK, Schwarz JR (1997) The class III antiarrhythmic agent E-4031 selectively blocks the inactivating inward-rectifying potassium current in rat anterior pituitary tumor cells (GH3/B6 cells). Pflügers Arch 434:1–10

    Article  PubMed  CAS  Google Scholar 

  57. Zaworski PG, Alberts GL, Pregenzer JF, Im WB, Slightom JL, Gill GS (1999) Efficient functional coupling of the human D3 dopamine receptor to G(o) subtype of G proteins in SH-SY5Y cells. Br J Pharmacol 128:1181–1188

    Article  PubMed  CAS  Google Scholar 

  58. Zhang Y, Wang H, Wang J, Han H, Nattel S, Wang Z (2003) Normal function of HERG K+ channels expressed in HEK293 cells requires basal protein kinase B activity. FEBS Lett 534:125–132

    Article  PubMed  CAS  Google Scholar 

  59. Zhang Y, Opresko L, Shankaran H, Chrisler WB, Wiley HS, Resat H (2009) HER/ErbB receptor interactions and signalling patterns in human mammary epithelial cells. BMC Cell Biol 10:78–92

    Article  PubMed  Google Scholar 

  60. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Teresa González for the technical assistance and Dr. Kevin Dalton for proof reading the text. We also thank Dr. Angel Martínez-Nistal, head of the Scientific and Technical Services of the University of Oviedo, for the loan of the epifluorescence light source for our patch-clamp setup. This work was supported in part by Spanish Ministerio de Ciencia e Innovación (MICINN) Grant BFU2009-11262 and Spanish Ion Channel Initiative (SICI) Consolider-Ingenio Project CSD2008-00005. L.C. and J. F-T were supported by predoctoral fellowships from the Ministerio de Educación y Ciencia (MEC) and the Fondo de Investigación Científica y Técnica (FICYT) of Spain. A.M. holds a postdoctoral contract from SICI-Consolider 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Domínguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Figure 1

Effect of the βγ scavengers βARK/CT and phosducin on Ca2+ liberation from GH3 cell intracellular stores in response to TRH. The time course of variations in [Ca2+] i levels is shown for Fura-2 loaded cells transfected with control plasmid, β-ARK/CT, or phosducin. Addition of 1 μM TRH is indicated by horizontal lines on top of the traces. Note the relatively high basal [Ca2+] i of the GH3 cells due to the spontaneous electrical activity and the oscillatory resting calcium levels of the individual cells. Continuous traces averaged point by point and their corresponding S.E.M. are shown. Data correspond to cells from the same microscope fields either showing fluorescence of the transfection marker (YFP+, left) or not (YFP−, right). Variations of [Ca2+] i levels in the cells showing some detectable peak Ca2+ increase after visual inspection are illustrated. In all cases, the number of averaged cells is in parenthesis. Averaged values from all data points before TRH addition and that of the initial maximum are indicated. The lower panel shows the averaged fold [Ca2+] i increase after TRH addition corresponding to the upper six panels. Analogous results were obtained in two additional experiments. (JPEG 127 kb)

High resolution (TIFF 1594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carretero, L., Barros, F., Miranda, P. et al. Cell type influences the molecular mechanisms involved in hormonal regulation of ERG K+ channels. Pflugers Arch - Eur J Physiol 463, 685–702 (2012). https://doi.org/10.1007/s00424-012-1094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1094-y

Keywords

Navigation