Skip to main content
Log in

Impact of myocyte strain on cardiac myofilament activation

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

When cardiac myocytes are stretched by a longitudinal strain, they develop proportionally more active force at a given sub-maximal Ca2+ concentration than they did at the shorter length. This is known as length-dependent activation. It is one of the most important contributors to the Frank–Starling relationship, a critical part of normal cardiovascular function. Despite intense research efforts, the mechanistic basis of the Frank–Starling relationship remains unclear. Potential mechanisms involving myofibrillar lattice spacing, titin-based effects, and cooperative activation have all been proposed. This review summarizes some of these mechanisms and discusses two additional potential theories that reflect the effects of localized strains that occur within and between half-sarcomeres. The main conclusion is that the Frank–Starling relationship is probably the integrated result of many interacting molecular mechanisms. Multiscale computational modeling may therefore provide the best way of determining the key processes that underlie length-dependent activation and their relative strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94

    PubMed  CAS  Google Scholar 

  2. Allingham JS, Smith R, Rayment I (2005) The structural basis of blebbistatin inhibition and specificity for myosin II. Nat Struct Mol Biol 12:378–379

    Article  PubMed  CAS  Google Scholar 

  3. Bagni MA, Cecchi G, Colombini B, Colomo F (2002) A non-cross-bridge stiffness in activated frog muscle fibers. Biophys J 82:3118–3127

    Article  PubMed  CAS  Google Scholar 

  4. Campbell K (1997) Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics. Biophys J 72:254–262

    Article  PubMed  CAS  Google Scholar 

  5. Campbell KS (2006) Filament compliance effects can explain tension overshoots during force development. Biophys J 91:4102–4109

    Article  PubMed  CAS  Google Scholar 

  6. Campbell KS (2009) Interactions between connected half-sarcomeres produce emergent behavior in a mathematical model of muscle. PLOS Computational Biology 5:e1000560. doi:10.1371/journal.pcbi.1000560

    Article  PubMed  Google Scholar 

  7. Campbell KS (2010) Short-range mechanical properties of skeletal and cardiac muscles. Adv Exp Med Biol 682:223–246

    Article  PubMed  Google Scholar 

  8. Campbell KS, Moss RL (2000) A thixotropic effect in contracting rabbit psoas muscle: prior movement reduces the initial tension response to stretch. J Physiol 525(2):531–548

    Article  PubMed  CAS  Google Scholar 

  9. Campbell SG, Lionetti FV, Campbell KS, McCulloch AD (2010) Coupling of adjacent tropomyosins enhances cross-bridge-mediated cooperative activation in a Markov model of the cardiac thin filament. Biophys J 98:2254–2264

    Article  PubMed  CAS  Google Scholar 

  10. Cazorla O, Vassort G, Garnier D, Le Guennec J-Y (1999) Length modulation of active force in rat cardiac myocytes: is titin the sensor? J Mol Cell Cardiol 31:1215–1227

    Article  PubMed  CAS  Google Scholar 

  11. Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88:1028–1035

    Article  PubMed  CAS  Google Scholar 

  12. Chapman C, Wasserman E (1960) On the dynamics of cardiac muscle. Am Heart J 58:272–317, Originally published, in German, in: Zeitschrift für Biologie. (1895) 32:370–447

    Google Scholar 

  13. Daniel TL, Trimble AC, Chase PB (1998) Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning. Biophys J 74:1611–1621

    Article  PubMed  CAS  Google Scholar 

  14. de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48:851–858

    Article  PubMed  Google Scholar 

  15. Dobesh DP, Konhilas JP, de Tombe PP (2002) Cooperative activation in cardiac muscle: impact of sarcomere length. Am J Physiol Heart Circ Physiol 282:H1055–H1062

    PubMed  CAS  Google Scholar 

  16. Fabiato A, Fabiato F (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256:54–56

    Article  PubMed  CAS  Google Scholar 

  17. Farman GP, Allen EJ, Schoenfelt KQ, Backx PH, de Tombe PP (2010) The role of thin filament cooperativity in cardiac length-dependent calcium activation. Biophys J 99:2978–2986

    Article  PubMed  CAS  Google Scholar 

  18. Fitzsimons DP, Moss RL (1998) Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. Circ Res 83(6):602–607

    PubMed  CAS  Google Scholar 

  19. Ford LE, Huxley AF, Simmons RM (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J Physiol 311:219–249

    PubMed  CAS  Google Scholar 

  20. Fuchs F, Smith SH (2001) Calcium, cross-bridges, and the Frank–Starling relationship. News Physiol Sci 16:5–10

    PubMed  CAS  Google Scholar 

  21. Fujita H, Labeit D, Gerull B, Labeit S, Granzier HL (2004) Titin isoform-dependent effect of calcium on passive myocardial tension. Am J Physiol, Heart Circ Physiol 287:H2528–H2534

    Article  CAS  Google Scholar 

  22. Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank–Starling mechanism of the heart. Circulation 104:1639–1645

    Article  PubMed  CAS  Google Scholar 

  23. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  24. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  25. Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626

    PubMed  CAS  Google Scholar 

  26. Helmes M, Lim CC, Liao R, Bharti A, Cui L, Sawyer DB (2003) Titin determines the Frank–Starling relation in early diastole. J Gen Physiol 121:97–110

    Article  PubMed  CAS  Google Scholar 

  27. Herron TJ, Rostkova E, Kunst G, Chaturvedi R, Gautel M, Kentish JC (2006) Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C. Circ Res 98:1290–1298

    Article  PubMed  CAS  Google Scholar 

  28. Hibberd MG, Jewell BR (1982) Calcium- and length-dependent force production in rat ventricular muscle. J Physiol 329:527–540

    PubMed  CAS  Google Scholar 

  29. Huxley HE, Stewart A, Sosa H, Irving T (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 67:2411–2421

    Article  PubMed  CAS  Google Scholar 

  30. Katz AM (2002) Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation 106:2986–2992

    Article  PubMed  Google Scholar 

  31. Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, Noble MI (1986) Comparison between the sarcomere length–force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58:755–768

    PubMed  CAS  Google Scholar 

  32. Konhilas JP, Irving TC, De Tombe PP (2002) Myofilament calcium sensitivity in skinned rat cardiac trabecule. Role of interfilament spacing. Circ Res 90:59–65

    Article  PubMed  CAS  Google Scholar 

  33. Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA 100:13716–13721

    Article  PubMed  CAS  Google Scholar 

  34. Le Guennec JY, Peineau N, Argibay JA, Mongo KG, Garnier D (1990) A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. J Mol Cell Cardiol 22:1083–1093

    Article  PubMed  Google Scholar 

  35. Lee EJ, Peng J, Radke M, Gotthardt M, Granzier HL (2010) Calcium sensitivity and the Frank–Starling mechanism of the heart are increased in titin N2B region-deficient mice. J Mol Cell Cardiol 49:449–458

    Article  PubMed  CAS  Google Scholar 

  36. Leonard TR, Herzog W (2010) Regulation of muscle force in the absence of actin–myosin-based cross-bridge interaction. Am J Physiol Cell Physiol 299:C14–C20

    Article  PubMed  CAS  Google Scholar 

  37. Matsubara I, Millman BM (1974) X-ray diffraction patterns from mammalian heart muscle. J Mol Biol 82:527–536

    Article  PubMed  CAS  Google Scholar 

  38. McDonald KS, Moss RL (1995) Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res 77:199–205

    PubMed  CAS  Google Scholar 

  39. Morgan DL (1990) New insights into the behavior of muscle during active lengthening. Biophys J 57(2):209–221

    Article  PubMed  CAS  Google Scholar 

  40. Moss RL, Fitzsimons DP (2002) Frank–Starling relationship: long on importance, short on mechanism. Circ Res 90:11–13

    Article  PubMed  CAS  Google Scholar 

  41. Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H (2001) Structural and functional studies of titin’s fn3 modules reveal conserved surface patterns and binding to myosin S1—a possible role in the Frank–Starling mechanism of the heart. J Mol Biol 313:431–447

    Article  PubMed  CAS  Google Scholar 

  42. Parmley WW, Chuck L (1973) Length-dependent changes in myocardial contractile state. Am J Physiol 224:1195–1199

    PubMed  CAS  Google Scholar 

  43. Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95:2368–2390

    Article  PubMed  CAS  Google Scholar 

  44. Smith GA (2010) Frank–Starling law and mass action calcium activation of the myofibril ATPase; comment on “de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol 2010; 48: 851–858”. J Mol Cell Cardiol 49:707–708, author reply 709

    Article  PubMed  CAS  Google Scholar 

  45. Smith DA, Geeves MA, Sleep J, Mijailovich SM (2008) Towards a unified theory of muscle contraction. I: foundations. Ann Biomed Eng 36:1624–1640

    Article  PubMed  CAS  Google Scholar 

  46. Starling E (1918) The Linacre lecture on the law of the heart. Longmans, Green and Co, London

    Google Scholar 

  47. Stoecker U, Telley IA, Stussi E, Denoth J (2009) A multisegmental cross-bridge kinetics model of the myofibril. J Theor Biol 259:714–726

    Article  PubMed  CAS  Google Scholar 

  48. Sun YB, Lou F, Irving M (2009) Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J Physiol 587:155–163

    Article  PubMed  CAS  Google Scholar 

  49. Swartz DR, Moss RL (1992) Influence of a strong-binding myosin analogue on calcium-sensitive mechanical properties of skinned skeletal muscle fibers. J Biol Chem 267:20497–20506

    PubMed  CAS  Google Scholar 

  50. Tachampa K, Wang H, Farman GP, de Tombe PP (2007) Cardiac troponin I threonine 144: role in myofilament length dependent activation. Circ Res 101:1081–1083

    Article  PubMed  CAS  Google Scholar 

  51. Tanner BCW, Danser AH, Regnier M (2007) Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLOS Computational Biology 3:e115

    Article  PubMed  Google Scholar 

  52. Telley IA, Denoth J, Stussi E, Pfitzer G, Stehle R (2006) Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers. Biophys J 90:514–530

    Article  PubMed  CAS  Google Scholar 

  53. ter Keurs HEDJ, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) Tension development and sarcomere length in rat cardiac trabeculae. Circ Res 46:703–714

    PubMed  Google Scholar 

  54. Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J 67:2422–2435

    Article  PubMed  CAS  Google Scholar 

  55. Williams CD, Regnier M, Daniel TL (2010) Axial and radial forces of cross-bridges depend on lattice spacing. PLoS Comput Biol 6:e1001018

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH HL090749 to KSC and the University of Kentucky Research Challenge Trust Fund. The author thanks Stuart G. Campbell and Premi Shekar (both University of Kentucky) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, K.S. Impact of myocyte strain on cardiac myofilament activation. Pflugers Arch - Eur J Physiol 462, 3–14 (2011). https://doi.org/10.1007/s00424-011-0952-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0952-3

Keywords

Navigation